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Abstract

We investigate the NP-hard problem of finding an optimal spanning tree in a given
undirected weighted graph, which occurs while minimising the power consumption
of data transmission in radio networks. We proposed new heuristics and conducted
an a posteriori analysis. All of the proposed methods showed high effectiveness, but
it is worth noting a hybrid genetic algorithm using variable neighbourhood search
(VNS) as mutations.
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1 Introduction and Formulation of the Problem

Elements of many systems use wireless communication. Thus, the energy con-
sumption of the element is proportional to the transmission distance [1]. In
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wireless sensor networks (WSNs), the sensors have a limited supply of energy
and energy efficiency for extending the network’s lifetime [10]. Modern sensors
are able to adjust the transmission range, but there is a problem with defin-
ing the range of each sensor to minimize the total energy consumption and
to maintain a connected graph. As a rule, a graph from which the commu-
nications network is sought is considered to be complete [1,2,4,9]. However,
the signal does not always propagate equally in all directions. Therefore, in
general, one should assume that the communication graph is arbitrary and
that the energy consumption to maintain the existence of the edges do not
only depend on the distance between the corresponding nodes [5].

The problem of determining the transmission distance of each vertex that
is located in a Euclidean space to induce a strongly connected graph in which
the overall energy to communicate is minimal was investigated in [9]. The
authors of [1] proposed an algorithm with an asymptotic ratio of 5/3, a poly-
nomial algorithm constructing an 11/6-approximate solution as well as the
exact algorithm – branch and bound method, which uses a new formulation
of the problem as a linear integer programming problem (LIP). In the paper
[2], the problem of determining the transmitter capacities for transmitting
data between the two distances, “small” and “long”, was considered. The
NP-hardness of this problem is proved. In [5], a more accurate ratio for the
minimum spanning tree is proposed and the polynomially solvable special
cases of the problem are found.

We consider the

Problem. The simple undirected weighted graph G = (V,E) with a vertex
set V , |V | = n, and a set of edges E is given. Let cij ≥ 0 be the weight of the
edge (i, j) ∈ E. We want to find a spanning tree T ∗ of the graph G, which is
the solution of the problem:

W (T ) =
∑

i∈V
max

j∈Vi(T )
cij → min

T
,(1)

where Vi(T ) is the set of vertices adjacent to a vertex i in the tree T .

Problem (1) is known as the min-power symmetric connectivity problem
[1]. Further, any feasible solution of (1) – spanning tree – will also be called a
communication tree. The considered problem is strongly NP-hard [1,5,6,9].
Moreover, if N �= NP , then there is no polynomial algorithm yielding a(
1 + 1

260

)
-approximate solution [5,6]. It is known that the minimum span-

ning tree P is a 2-approximate solution of the problem (1). Moreover, [5]
proved that W (P )/W (T ∗) ≤ 2 − 2a/(a + b + 2b/(n − 2)), where the weights
of the edges of P are in the interval [a, b].
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In this paper, we propose new heuristic algorithms and present the nu-
merical experiments that show their efficiency. In particular, we perform a
comparison of the algorithms with and without VNS [7,8].

2 Heuristic Algorithms

The first algorithm (LI) is the procedure of local improvements for the ar-
bitrary spanning tree. The second algorithm is a local search with variable
neighbourhood searches (VNS). The third algorithm is a hybrid genetic algo-
rithm GA LI, which uses LI as a mutation. The fourth algorithm is a hybrid
genetic algorithm GA VNS that uses VNS as a mutation. Let us first describe
the procedures LI and VNS and then propose the general scheme of the genetic
algorithm, which is used in the algorithms GA LI and GA VNS.

2.1 Local Improvements

Initial Step. Let T be the arbitrary spanning tree. Denote di = max
j∈Vi(T )

cij

as the weight of the vertex i ∈ V . Choose the vertex v0 = argmin
i∈V

di as

a root of the tree T . Define the orientation of the edges of the tree from
the root. Denote p(i) as the parent vertex for the node i ∈ V (i.e., the
arc (p(i), i) ∈ T ) and suppose that p(v0) = v0. We call D(i,j) = 2cij −
min{cij , max

k∈Ni(T )\{j}
cik}−min{cij, max

k∈Nj(T )\{i}
cjk} the deterioration for the edge

(i, j). Calculate the deteriorations for all edges of the tree T .

Basic Step. Look through all the vertices except the root of the tree in
increasing order of the deteriorations D(p(i),i) and for each vertex i ∈ V \ {v0},
execute the following local improvement procedure. Delete the edge (p(i), i)
and break tree T into two connected components. For each vertex j of the
component containing the root v0 (denote this component as S(i)), perform
the following procedure. Add the edge (j, i) to the graph T \ {(p(i), i)} and
calculate the deterioration D(j,i). Then, delete the edge (j, i) from the tree
and repeat the procedure for another node in S(i). Connect the components
using the edge with the smallest deterioration. If no edge has less deterioration
than the edge (p(i), i), then (p(i), i) remains in the tree T . Note that when
replacing the edge, the objective function (1) decreases.

If after reviewing all vertices with at least one change for the edge, repeat
the basic step. Otherwise, exit the procedure. The constructed tree is the
desired approximate solution of the problem (1).
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2.2 Variable Neighbourhood Search (VNS)

The idea using different rules for constructing neighbourhoods for the current
solution was proposed by P. Hansen and N. Mladenović [7,8]. Let tree T
be the solution to the problem (1) (i.e., some spanning tree). We consider
the following system of neighbourhoods {Nk(T )}k∈Z+ for T . Each set Nk(T )
consists of the spanning trees, and the difference from T is not more than
k edges. An iteration of the algorithm consists of a successive local search
in the neighbourhoods N1, N2 and N3. For each k ∈ {1, 2, 3}, the local
improvement procedure is as follows. First, with a probability proportional
to the contribution of the objective function (contribution of the edge (i, j)
is decreasing for W (T ) after the deletion of (i, j)), remove k edges, while the
tree T splits into k + 1 connected component. Then, search for the edges
connecting the k + 1 components in a spanning tree (without changing the
edges inside the component) to obtain the best tree. If k ≤ 2, then we
perform an exhaustive search of the solutions in the neighbourhoods. If k = 3,
then the enumeration of possibilities is too complex. Therefore, a new tree is
constructed as follows. First, for every pair of the components sought, an edge
connects them with a minimum contribution to the objective function value
(denote the set of these edges as U). Then, the min-weight tree is built for
the complete graph with vertices corresponding to the connected components,
and the edge set is U . If some k ∈ {1, 2, 3} procedure fails to find a better tree,
then proceed to the next neighbourhood Nnext(k)(T ), where next(k) = k + 1
for k ∈ {1, 2}) and next(3) = 1. If successive attempts to improve the solution
in the neighbourhoods N1(T ), N2(T ) and N3(T ) have been unsuccessful, the
algorithm stops.

2.3 Hybrid Genetic Algorithm

For an approximate solution to problem (1), we propose a genetic algorithm,
which uses the procedures described above as mutations. The algorithm takes
a succession of populations, each of which is a set of spanning trees of a
graph G. The algorithm terminates after the stopping criterion, which is
described below. The input algorithm has the following parameters: N ∈ Z

+

– population size; M ∈ Z
+ – the number of new individuals in the population

after each iteration; P ∈ [0, 1] – the probability of mutation; K ∈ Z
+ – the

stopping criterion parameter.

Initial Step. The initial population is generated by taking the minimum
spanning tree, and the remaining N − 1 individuals are constructed as fol-
lows. First, the root node is randomly selected, and then one random edge is
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sequentially added and joins a vertex of the tree-to-be with the new vertex.
The probability of selecting the edge is inversely proportional to its weight.
The obtained individual is added to a population in the case if it is not a copy
of an existing individuals.

Iteration.

(i) Calculate the fitness of each individual T as 1/W (T ).

(ii) Sequentially select pairs for crossing from the population M . The prob-
ability of selecting individual is proportional to the individual’s fitness,
and each individual can belong to several couples. A cross between two
individuals is one descendant.

(iii) When crossing two individuals, one arbitrary vertex is selected as a root
in both trees, and the edges obtain the orientation from the root. The set
of edges includes all descendant edges that appear in both trees. To add
other edges, select a vertex that is not at the end of the arc in the tree-to-
be. Each of the two parents has exactly one edge ending at the selected
vertex. One of these two edges is randomly selected with a probability
inversely proportional to the contribution of the edge in the objective
function.

(iv) At the stage of mutation, the procedure of local improvements is applied
to each child with probability P . The resulting individual is added to the
population if it is not a copy of existing individuals.

(v) N fittest individuals are selected in a new population.

Stopping Criterion. The algorithm stops if the last K iterations do not
change the minimum and maximum values for the objective function of the
elements of the population.

3 Numerical Experiment

We used the LIP formulation of (1) from [5] to find the optimal solution using
the CPLEX package. The experiment was conducted for n ∈ [5, 500]

⋂
Z. For

the same dimension, 100 different instances were generated. A hybrid genetic
algorithm was run with different values of the input parameters. As a result,
the combination of parameters N = 30,M = 20, P = 0.8, and K = 20 on
average yield the most near-optimal solution in a reasonable time. At these
values, the parameters of the genetic algorithm results were compared with the
trees built by other methods. The experiment was conducted on a computer
with an Intel Core i5-3470 (3.2GHz) with 8Gb. The results are shown in the
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figures below.
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Fig. 1 compares the ratios WA(T )/W (T ∗), where WA(T ) is the value of
the objective function for the solution yielded by algorithm A. On average,
in those cases when it was possible to accurately calculate the ratio (i.e.,
when n ≤ 35), the algorithm GA LI built a solution which differs from the
optimum by no more than 0.6% and the algorithm GA VNS built a solution
that differed from the optimal value by not more than 0.01%. The LI algorithm
proved to be more accurate than the VNS algorithm when n > 50. When
n > 50, CPLEX failed to find an optimal solution within a reasonable time,
and instead of W (T ∗) we used the lower bound value of the optimal objective
function. In Fig. 2(a), we see that at a small dimension, the algorithm
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Fig. 3.

GA VNS almost always built the optimal solution, and in the worst case (for
n = 35), the algorithm GA VNS built an optimal solution in 98% of cases,
while the algorithm GA LI only built an optimal solution in 43% of cases.

The graphs in Fig. 2(b) and Fig. 3 represent the running time of the
algorithms. The algorithm GA LI solves the problem in a reasonable time
when n ≤ 200, the algorithm GA VNS – when n ≤ 500, and the CPLEX
package – when n ≤ 35. Algorithms LI and VNS yield an approximate solution
for n = 500 in less than 1 second.

4 Conclusion

The numerical experiment showed high efficiency for the proposed algorithms.
An approximate solution yielded by the hybrid genetic algorithm using VNS as
mutations was the closest to the optimal solution. The experiment showed that
algorithm GA VNS solves the problem in a reasonable amount of time when
n ≤ 500 and has a lower growth rate for the operating time than algorithm
GA LI. LI is applied to the minimum spanning tree and has high efficiency. In
large dimensions, the application of this method is most justified for achieving
high-speed calculations and for ensuring the quality of the solution. The use
of the package CPLEX for the LIP also proved to be an effective way to solve
the problem for a small dimension. Thus, the average problem was solved by
CPLEX in less than 100 seconds for n = 30 (with parallelization on 4 threads)
and in 520 seconds for n = 35.

The most effective algorithm of the proposed algorithms was the GA VNS
(hybrid genetic algorithm using VNS as mutations) yielding a 1.0009-approximate
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solution for small dimensions (n ≤ 35) and a 1.3-approximate solution for
50 ≤ n ≤ 500. This gap occurs because, for the assessment of the ratio for a
large dimension, the lower bound was used instead of the optimal value for the
objective function. In fact, we assume that the 1.0009-approximate solution
is built for each dimension of the problem.
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