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Abstract—For the problem arising in the design of integrated chips, an efficient heuristic ap-
proach was proposed. It unites the stages of placing the logical elements (devices) on the chip
and performing their detailed routing. At that, it minimizes both the critical (maximum) delay
and the chip area required for routing.

1. INTRODUCTION

Placement and routing (interconnection of the operators) is pivotal to designing chips with
computational (logical) operator elements (devices). Not so long ago it was assumed in the design
of logical networks that the circuit delay (time of computation) depends only on the time for
executing operations in the logical elements. Since the advent of circuits with elements essentially
smaller than one micron, the delay of data transmission between the elements became the major
component of the total delay. As was stressed in [1], for the elements not exceeding 0.25 µm,
the data transmission delay can be up to 80% of the total time of computations. Works [2–4]
paid more attention to the delays caused by data transmission through a logical network. For
example, a new procedure enabling design of circuits that can be conveniently placed on chip by
planning interconnections concurrently with design of a logical network and with due regard for
the interconnections between the elements was proposed in [2]. An algorithm of placement and
local rearrangement of a logical circuit calculating Boolean function was proposed in [4]. It first
determines the set of the so-called super-elements comprising a subset of logical elements and lying
on the critical (maximum delay) paths and then generates for each super-element a set of the non-
worst transformed designs. A new method of floorplanning and placement of the elements within
floors was proposed in [3].

Approaches to combining the stages of placement and routing were described in a number of
publications [5–12]. For example, [5] presents an algorithm to construct the optimal logical tree
with determination of the outputs of elements for a set of ordered critical terminals. The algorithm
makes use of dynamic programming and is applicable to a special topology of the so-called LT-
trees. The authors of [8] extend the procedure of concurrent placement and global routing of the
algorithm for transport-processing FPGAs [7] and propose a new algorithm with constrained length
of each critical path. The algorithm is based on hierarchical decomposition of the chip area and
application of the LookUp Table procedure for element placement.

The present paper considers delays both in the circuit elements and in the wires for data trans-
mission between the elements. An efficient polynomial algorithm for concurrent placement of the
elements and their interconnection according to the given circuit is proposed for the first time.

1 This work was supported in part by the grants of KISTEP’99 and the Russian Foundation for Basic Research,
project no. 02-01-00977.
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CONCURRENT PLACEMENT AND ROUTING 1989

Special attention is paid to the detailed routing for interconnecting the network elements by ad-
missible paths. At that, the edge-disjoint shortest paths passing along the edges of a rectangular
grid are admitted.

2. FORMULATION OF THE PROBLEM

Let us assume that each element of the network has a single output, that is, the result of its
calculations is sent only to one circuit element. It is, therefore, easy to see that the logical network
without hanging vertices is a tree whose vertices are the elements performing calculations and the
root vertex (main output) yields the result. At that, the hanging vertices of the tree are the main
chip inputs receiving the variables of the calculated function. Then, the problem can be formulated
as follows. Given are the set of elements (operators) having one or more inputs and one output each
and also the places of the main inputs on the chip boundary (rectangular area, as a rule), main
output, and the corresponding logical network realizing the function (see Fig. 1). Additionally,
each main input stores the time of data arrival. The data are as a rule the result of operation of
other units and need not be concurrently delivered to all the main chip inputs. The problem lies
in placing the operators and performing routing (according to the logical network) with the use of
both chip surfaces, which means that one side is used by the horizontal lines (wires) and the other,
by the vertical lines. This scheme is called the two-sided routing.

Let a chip wafer be given having a rectangular grid with unit distance between two parallel
neighbor lines. On its side boundary positions of the main inputs, the set I, and one output 0
are fixed. We assume that each grid edge (interval between the neighbor nodes of the grid) has a
unit delay (or length). The logical function represented as a logical network defines the topology
of interconnections. Stated differently, for each operator oi including main output 0, the set of
elements Vi sending data to it is known (we call them the successors of the vertex i). Let us assume
that any internal vertex of the chip (operator or element) has a single output to another element
(called the predecessor) or to the main output. Consequently, the internal network is a tree with
the root at the common output 0. Additionally, an initial delay—an integer di ≥ 0 (the instant of
data arrival)—is defined for each main input i ∈ I. Also, let the critical delay D be given. This
means that the total time of calculations (delay) along the path leading from each main input to
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Fig. 1. Example of placement and routing for the formula f = [x1o1(x2o2x3)]o3[x1o4x4], where xi is the main
input i; ok is the operator k; and 0 is the main output. We assume that the vertical lines are on the other
side of the chip.
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the main output—which is the sum of the initial delay at the main input, the delays of transmission
along the grid edges in the path, and the time of operator work—should not exceed D.

The problem under study lies in determining the optimal placement of rectangular elements (with
the possibility of rotating them by ±90◦, 180◦) and constructing edge-disjoint routes between the
elements and their successors (according to the logical network and using the grid edges) where
delays do not exceed the given values. The minimum of the occupied chip area and critical delay
is used here as a criterion. The present paper proposes a heuristic approach uniting dynamic
programming with detailed routing and constructs solution in a polynomial time.

3. METHOD

A logical network is given as the set Vi of immediate successors of the operator oi ∈ O and the
main output 0. Any its vertex can be related to one of the levels 	 ∈ [0, L] depending on the number
of edges in the longest path from this vertex to the main input. For example, for the representation
of the function

f = x1(x2 + x3) + x1x4 = [x1o1(x2o2x3)]o3[x1o4x4]

the main inputs xi, i = 1, 2, 3, 4, constitute the zero level, the operators o2, o4 belong to the first
level, the operator o1, to the second level, the operator o3, to the third level, and the main output 0,
to the fourth level of the logical network (see Fig. 2).

Since the critical delay D of the circuit is known, the length of each path from the main input
to the main output is limited, and one can determine the admissible region (area) for placement
of each operator [2]. Let us assume that for each operator oi ∈ O these regions Ri are known and
decompose the chip area into neighborhoods where the elements can be placed.

As was mentioned before, the concepts of dynamic programming will be used to find a solution.
This method consists of two stages, forward and backward recursions. During the forward recursion,
routing (in order to attach the successors) by the criterion for the minimum area occupied by wires
is performed for each admissible placement of the element and any admissible delay from its inputs
to the main output. The occupied area is calculated as the total number of grid edges in the routes.
Backward recursion provides the values of particular delays and determines the places of operators.
The routing algorithm constructs the admissible paths between the vertices and their successors.

Fig. 2. Example of a logical network for the formula f = x1(x2 + x3) + x1x4 = = [x1o1(x2o2x3)]o3[x1o4x4],
where xi is the main input i and ok is the operator k.
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3.1. Forward Recursion

This stage proceeds from level 0 of the logical network upward to the main output 0 at level L.
For each internal vertex (operator) i, we introduce two cost functionals Si(ti, pi) and Sij(tj , pj).
The first functional is the minimum total number of grid edges in the admissible paths from the
successor vertices of the set Vi to the vertex i. We call it the cost of the subtree of the vertex i. Here,
the variable ti reflects the delay from the input element i to the main output 0, and pi corresponds
to the number of the place of the vertex i. The second functional is equal to the minimum of cost of
the subtree Si(ti, pi) plus the length of the (still unknown) path from i to its predecessor vertex j.
Precise value of the length of path from i to j will be known after routing. Here, tj and pj are
the delay and place of the operator j, respectively. The aforementioned place pi of the element i
implies determination of the grid nodes containing the inputs and the output of the element. Stated
differently, if the place of an operator is known (for example, pi has a corresponding integer value,
the number of the place), then this means that the grid nodes containing its inputs and output are
known.

Location of each main input i∈I is fixed, and the cost of the corresponding subtree is Si(ti, pi)=0
if ti+ di ≤ D and Si(ti, pi) = +∞, otherwise. The value of the second cost functional for the main
inputs will be determined after routing. It will be Sij(tj , pj) = Si(tj + τij, pi) + τij, where j is the
predecessor vertex for i and τij is the length of the corresponding route rij from i to j. Thus, the
cost of a subtree is as follows:

Sj(tj , pj) = min
τij

∑

i∈Vj
Sij(tj , pj).

The routing algorithm minimizing this expression will be described in Section 3.3.
Let j be an arbitrary operator of the level 	, 1 ≤ 	 ≤ L− 1, and the vertex k be its predecessor.

The cost of the subtree Sj(tj , pj) has been calculated for all admissible values of arguments. We
assume that the functional

Sjk(tk, pk) = min
τjk ,pj

{τjk + Sj(tk + τjk + τj, pj)},

where τj is the time of work of the operator j. Therefore, this expression defines the place of the
operator j and the delay (but not the route itself) from its output to the input of the element k and
depends on the position of the vertex k. Since the best position of the successors of the element k
and the delays to them are known, it is possible to carry out routing in order to calculate the
functional

Sk(tk, pk) = min
rjk

∑

j∈Vk
Sjk(tk, pk).

After determining the admissible paths, some of the previously determined delays τjk can be in-
creased (this problem will be discussed in detail in Section 3.3). We assume that

Sjk(tk, pk) = Sj(tk + τjk + τj, pj) + τjk,

where τjk is now the length of the corresponding constructed path rjk. Let us calculate the subtree
cost

Sk(tk, pk) =
∑

j∈Vk
Sjk(tk, pk).

Finally, we get S0(0, p0), as well as the values of τi0 and pi, which provides a certain delay and a
particular position of each element i ∈ V0 of level (L− 1).

AUTOMATION AND REMOTE CONTROL Vol. 64 No. 12 2003



1992 ERZIN, CHO

3.2. Backward Recursion

At this stage, placement and routing are carried out for each set Vi from the upper level and
to the lower-level vertices, the main network inputs. Since at the end of the forward recursion
the places of all vertices of V0 are determined and the admissible paths from them to the main
output are constructed, the real delays ti = τi0 + τi at their inputs are known. Consequently,
one can readily determine the places of the lower-level operators and the paths from them to the
their predecessors. Indeed, let i be an arbitrary operator of the 	th level. Positions of the inputs
of its predecessor j and the delay dj in them are also known. Values of the variables minimizing
min
τij ,pi
{τij +Si(tj + τij + τi, pi)} define the position pi of the element i and the delay ti = tj + τij + τi

from its inputs to the main output 0. As soon as these parameters are established for all elements
of Vj , the routing procedure constructs the admissible paths to connect the vertices from Vj with
the vertex j. As the result, the actual delays will be determined for all vertices i ∈ Vj. Finally, the
desired solution will be constructed by repeating the above procedure for all network vertices.

3.3. Routing Algorithm

The routing algorithm is the most important procedure in the above approach. The problem
of routing is solved for each element (operator) with the aim of determining the admissible paths
of the data from the successor vertices. This problem can be formulated as follows. The root
vertices 0i ∈ m0 ⊆ V (inputs of the operator) and terminal vertices V ′ ⊆ V (the set of the operator
successors) are specified on the given grid graph G = (V,E), where V is the set of vertices (n = |V |)
and E is the set of edges. It is required to construct edge-disjoint shortest (or limited-length) paths
from each terminal to an arbitrary root 0i. The aforementioned constraints on the length (delay)
are the maximum admissible lengths (the number of grid edges) dk of the path from k. More
precisely, we want to construct an admissible path from each terminal k that can intersect only
the vertices of other paths. Moreover, the maximum exceedance of the path over the distance to
the nearest root must be minimum and in any case needs not to exceed dk. If ti is the delay at an
input of the vertex i, then dk = max{d | Sk(ti + d + τk) < +∞} for each k ∈ Vi. We assume here
that τk = 0 for all main inputs k ∈ I. In what follows, let d = max

k∈V ′
dk.

The difference gk = dk − τki between the upper delay boundary for the terminal k ∈ Vi and the
length of the path from this terminal to the root will be called the margin. Its value defines the
increment in length of the corresponding path that does not violate the delay constraint, that is,
does not increase the critical delay. For any admissible routing, obviously, 0 ≤ gk ≤ dk−dki, where
dki is the distance from k to the nearest root. It is clear that the best routing is that maximizing
the margin for all terminals.

3.3.1. Construction of the hierarchical structure. We reduce the above routing problem to that
on the (d+ 1)-level hierarchical structure (HS) constructed as follows. We introduce the set m	 of
vertices of each HS level 	 ∈ [0, d] and the set of edges V	i outgoing from each vertex i ∈ m	 to the
vertices of the (	 + 1)th level. The zero (upper) level consists of the set m0 (the root vertex 0).
The first level m1 = {j ∈ V | (0i, j) ∈ V0i, 0i ∈ m0} includes all vertices adjacent to the vertex
0 ∈ m0. In the course of constructing the HS, a set of forbidden edges F	i will be assigned to each
intermediate HS vertex i ∈ m	, which means that any path passing though i ∈ m	 to the lower
levels will contain edges of the set F	i, that is, the edges F	i belong to the single path from the
vertices of preceding levels.

So, for any intermediate vertex j ∈ m1 of the first level, the set F1j = {(0i, j) | (0i, j) ∈ V0i}.
Let us assume that (	 − 1) of the first HS levels have been constructed. The set of vertices of
the 	th level can be defined as m	 = {j ∈ V \{{k ∈ V ′|dk < 	} ∪m0}|(i, j) ∈ V	−1i, i ∈ m	−1\V ′},
where V	−1i = {(i, j) ∈ E\F	−1i|i ∈ m	−1, i /∈ V ′}. We assume for each intermediate vertex j ∈ m	
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that
F	j =

⋂

i∈m�−1|(i,j)∈V�−1i

F	−1i.

If the vertex j ∈ m	 has a single incident edge (i, j), i ∈ m	−1, then we assume that F	j =
F	j ∪ {(i, j)}.

Understandably, a terminal can be included in the set of vertices of the 	th level only if the
upper delay boundary does not exceed the number of the 	th level. Consequently, the terminal k
can belong to m	 if 	 ∈ [dk0, dk], where dk0 is the distance from k to the nearest root.

Finally, the last HS level d can consist only of the terminals with the maximum delay boundaries.
We note that the same vertex can be included in more than one HS level. We illustrate construction
of an HS by way of the example shown in Fig. 3 having four terminals numerated from 1 to 4 and
two roots 01 and 02. Let d1 = 3, d2 = 4, d3 = 4, d4 = 5. In this example, numerated are only the
intermediate vertices that may be included in the desired paths. We note, for instance, that d2 = 4
and the nearest root vertex of terminal 2 lies at distance 1. Therefore, terminal 2 can be situated
at all HS levels from the first to the fourth. The maximum delay boundary for terminal 4 defining
the number of HS levels is d = 5. The corresponding HS is depicted in Fig. 4. Here, the shortest
paths are represented by the path of length 3 from terminal 1, path of length 1 from terminal 2,

Fig. 3. Example of placement of the terminals and operators (root vertices). The edge-disjoint admissible
paths are shown by bold lines.

Fig. 4. Hierarchical structure and initial bundles of terminals (bold lines).
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path of length 2 from terminal 3, and path of length 3 from terminal 4. As will be shown below,
for this example one cannot construct the shortest edge-disjoint paths and has to extend the path
from terminal 4 by two units.

3.3.2. Bundles of routes. In this section we define the notion of bundle Tk for all terminals
k ∈ m	k . By the bundle for the terminal k is meant the set of edges Tk = {T1k, T2k, . . . , T	kk} in the
HS that can be included in the desired path from k to the root. At that, the set T	k ∈ Tk consists
of the edges connecting the vertices of level (	− 1) and the vertices of level 	 in the paths from the
terminal k, and 	k is the level where the terminal k is currently situated. Since the terminal can
be at more than one HS level, first we determine the bundles for its “upper” position in the HS.
For instance, terminal 1 in Fig. 4 has the bundle

T1 = {T11 = {(01, 6)}; T21 = {(6, 5), (6, 8)}; T31 = {(5, 1), (8, 1)}}.

We note that the bundles for all terminals can be sought by one upward scan of the HS from the
terminals to the roots.

As soon as the bundles for various terminals become known, they can be compared. For this
purpose, we assign the parameter p	k(i, j) ∈ [0, 1] to each edge (i, j) ∈ T	k. It reflects the probability
of including the edge (i, j) into a path from the terminal k as the 	th—counting from the root
vertex—edge. To simplify calculations, we assume that p	k(i, j) = 1/|T	k|. For the example of
Fig. 4, p31(8, 1) = 1/2, p24(9, 12) = 1, and so on. When some edges will be included into solution,
these parameters can change their values.

Comparison of the bundles of different terminals can cause conflict. For example, if p	k(i, j) > 0
and ppq(i, j) > 0, then the edge (i, j) can be used in alternative paths. To resolve such conflicts,
heuristics is proposed in the next section.

3.3.3. Routing heuristics. Let the current position (level 	k) be known for each terminal and the
bundle Tk be also given for any terminal k ∈ V ′. We formulate the following statements.

Lemma 1. If for any pair of bundles Tp and Tq there exists an edge (i, j) ∈ {Tp ∩ Tq} with the
characteristics pmp(i, j) = 1 and p	q(i, j) = 1, then there exists no edge-disjoint path from the
terminals p and q. (Here and in what follows we assume that (i, j) = (j, i)).

Proof. Since pmp(i, j) = 1 and p	q(i, j) = 1, the edge (i, j) is unique for connecting the levels
(m − 1) and m for the bundle of the terminal p and the levels (	− 1) and 	 for the bundle of the
terminal q. Therefore, if (i, j) is included in a path from p, it cannot be used in the edge-disjoint
path from q. As the result, the terminal q remains disconnected from the root vertex.

Lemma 2. If for any bundle T	k there exists an edge (i, j) ∈ T	k with the characteristic
p	k(i, j) = 1, then it should be included in the path from the terminal k as the 	th edge.

Proof. Since p	k(i, j) = 1, the unique edge connecting the levels (	− 1) and 	 for the bundle of
the terminal k is (i, j). For example, if (i, j) is included into another path, then it cannot be used
in the edge-disjoint path from k. As the result, the terminal k remains disconnected from the root
vertex.

Lemma 3. If for any subset of the terminals S ⊆ V ′ of cardinality K(|S| = K) there exists a

level 	 such that

∣∣∣∣∣
⋃
k∈S

T	k

∣∣∣∣∣ < K, then there exists no edge-disjoint path from all terminals k ∈ S.

Proof. Since it is required to construct an edge-disjoint path for each terminal and each path
has exactly one edge connecting the levels (	− 1) and 	, there should be at least K different edges
connecting these levels.
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The routing procedure can be applied more than once until a solution is constructed. At first,
we reduce the HS to a forest where each tree is rooted at one of the root vertices. Finally, in the
reduced HS (RHS) there will be at least one path from each terminal. The reduction procedure
starts from level 0. The vertices of this level are connected to the vertices of level 1 by the edge
from T1k. We arrange all positive p1k(i, j), (i, j) ∈ T1k, k ∈ V ′, in a nonascending order and
denote this ordered list by R. We include in the RHS the edge (i, j) corresponding to the first
element p1m(i, j) of R and the vertex j. Then, we eliminate from R all p1k(i, j), that is, assume
that R = R\{p1k(i, j), k ∈ V ′}. If p1m(i, j) = 1, we assume that p1k(i, j) = 0, k �= m, and remove
all other edges (i, j) (of course, also (j, i)) from the HS. We recalculate the probabilities pqk(i, j)
for the remaining edges. If j is an intermediate vertex, we assign to it the weight Pkj = p1k(i, j),
k ∈ V ′, and the set of passed edges PEj = {(i, j)} as labels. If j is a terminal vertex, then we
remove all edges (i, j) (and (j, i)) from the HS and recalculate the probabilities pqk(i, j), q > 0. In
the last case, (i, j) is the desired path to the terminal j.

We take another element of R and repeat the above procedure. If at least one terminal of the
first level k ∈ m1 is disconnected from the root vertex after exhaustion of R, we stop routing.
Otherwise, the procedure is repeated for other levels.

Let 	 be an arbitrary HS level. Its vertices are connected with those of the level 	 − 1 by the
edges from T	k. We arrange all positive products p	k(i, j)Pki, (i, j) ∈ T	k, k ∈ V ′, in a nonascending
order and again denote this ordered list by R. We take the first element of the list p	m(i, j)Pmi ∈ R,
(i, j) /∈ PEi. Let us include the edge (i, j) and the vertex j in the RHS and remove from R all
p	k(i, j)Pki, that is, assume that R = R\{p	k(i, j)Pki, k ∈ V ′}. If p	m(i, j) = 1, then we assume
that p1k(i, j) = 0, k �= m, and remove all edges (i, j) and (j, i) from the HS, then recalculate the
probabilities pqk(i, j). If j is an intermediate vertex, we label it by the weight Pkj = p	k(i, j)Pki,
k ∈ V ′, and the set of passed edges PEj = PEi ∪ {(i, j)}. If j is a terminal, then we remove all
edges (i, j) (and (j, i)) and all edges PEi from the HS. We recalculate the probabilities pqk(i, j),
q ≥ 	. In the last case, PEi ∪ {(i, j)} is the desired path to the terminal j.

We take the next element from R and repeat the above procedure. If after exhausting R at least
one terminal of the 	th, k ∈ m	, level it still disconnected from any vertex of the preceding level,
we stop routing, Otherwise, we continue this procedure for the next levels of the HS.

The admissible paths to the terminals are as the result either constructed or not. We recall
that the terminals can be at different HS levels and that now we discuss the uppermost positions
(in the HS) of the terminals. In the case where an admissible path was not constructed to any
terminal(s), it is possible to increase the admissible length of some paths and repeat routing. The
terminal k to which the path must be increased can be chosen by minimizing the loss of margin.
Since in the course of constructing the HS we admitted occurrence of the terminal k at different
levels dki, dki + 1, . . . , dk, the levels to which the terminal k belongs are known. We choose among
the disconnected terminals a terminal k ∈ mp such that it can be moved to a farther level q > p,
k ∈ mq, in the HS with the minimum loss of margin, that is, with the minimum difference (q − p).
For this terminal k ∈ mq, we determine a new bundle Tk and compare it with the other bundles to
detect conflicts (see Lemmas 1–3). If there are no conflicts, we carry out routing.

For Fig. 4, for example, the bundles for the initial position of the terminals 1 ∈ m3, 2 ∈ m1,
3 ∈ m3, and 4 ∈ m3 are as follows:

T1 = {T11 = {(01, 6)}; T21 = {(6, 5), (6, 8)};
T31 = {(5, 1), (8, 1)}}; T2 = {T12 = {(01, 2)}};

T3 = {T13 = {(02, 9)}; T23 = {(9, 12)};
T33 = {(12, 3)}}; T4 = {T14 = {(02, 9)};

T24 = {(9, 12)}; T34 = {(12, 4)}}.
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Hence, p13(02, 9) = p14(02, 9) = 1, and it follows from Lemma 1 that there are no edge-disjoint
paths from terminals 3 and 4. Therefore, one of them must be moved to a farther level. Terminal 3
can be moved to the fourth level with loss of a unit of the margin, but this replacement causes
conflict between the bundles of terminals 3 and 1. The conflict is unsolvable because the margin for
terminal 1 is zero, and consequently, it cannot be moved to farther levels. Therefore, replacement
of terminal 3 to the fourth level is inadmissible. Then, terminal 4 must be moved, and level 5 is the
only level where it can be placed. The new bundle for terminal 4 is shown in Fig. 5 together with
other bundles. Now, there are no conflicts between the bundles, and it is possible to start routing.
The first ordered list for choosing the edges between the vertices of the zero and first levels is as
follows:

R = {p11(01, 6) = 1; p12(01, 2) = 1; p13(02, 9) = 1; p14(02, 9) = 1/2; p14(02, 7) = 1/2}.

Consequently, (01, 6) is the first chosen edge. It is included in the RHS, and vertex 6 is labeled
by P16 = p11(01, 6) = 1 and PE6 = {(01, 6)}. The next edge added to the RHS is (01, 2). Then,
(02, 9). The labels P39 = p13(02, 9) = 1, P49 = 0 (see Lemma 2), and PE9 = {(02, 9)} are
assigned to the intermediate vertex 9. By that time, the sets R = {p14(02, 7) = 1} and (02, 7) are
undoubtedly included in the RHS after recalculation of the probabilities. As the result, the labels
P47 = p14(02, 7) = 1 and PE7 = {(02, 7)} are assigned to vertex 7. The underlined values of Pki are
shown in Fig. 5 near the vertices. For the second level, the set R = {p23(9, 12) = 1; p24(7, 10) = 1;
p21(6, 5) = 1/2; p21(6, 8) = 1/2}. Consequently, the edge (9, 12) is included in the RHS. Vertex 12
has the labels P3,12 = 1 and PE12 = {(02, 9), (9, 12)}. Moreover, the edge (9, 12) belongs to T4.
Therefore, it is removed from T4, and after recalculation p34(10, 13) = 1.

Further construction of the RHS follows the same lines. The final solution is shown in Fig. 5
by bold lines. The corresponding paths are shown by bold lines also in Fig. 3. The dashed lines in
Fig. 5 correspond to the communication lines that were eliminated from the bundles by the routing
algorithm.

Fig. 5. Bundles after moving terminal 4 and the constructed paths (bold lines).
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4. EFFICIENCY OF THE METHOD

In this section we discuss complexity of the proposed approach. Complexity of the forward
recursion is, undoubtedly, defined by calculation of the functionals Si(ti, pi) and Sij(tj , pj), 0 ≤ ti,
tj ≤ D, pi ∈ Ri, pj ∈ Rj for each vertex i, where Ri are the admissible areas for placement of the
operator i. Consequently, the complexity of the forward recursion is bounded by

O(ND|Ri|(Ci +D|Rj|)) ≤ O(NDn(Ci +Dn)),

where N is the number of operators and Ci is the complexity of the procedure for connecting to
the operator i its successors.

The routing complexity includes the complexity CHS of constructing the HS and that of routing
itself CR. Since the degree of each grid vertex is bounded by 4, the complexity of constructing the
HS does not exceed O(nD2). Bundles are constructed for each terminal in the course of routing.
To this end, it suffices to perform one upward scanning of the HS. Hence, construction of bundles
requires about O(nD) elementary operations. The next step lies in calculating the probabilities
p	k(i, j). This procedure has the same complexity O(nD). However, in the course of routing the
probabilities can be recalculated more than once. For example, after compilation of the list R and
inclusion of edges in the RHS, some edges may be eliminated from the HS, and consequently, the
probabilities p	k(i, j) must be recalculated. Obviously, recalculation of the probabilities p	k(i, j)
has complexity O(nD). Consequently, CR = O(n2D2) is the complexity of routing itself.

If the algorithm cannot construct admissible paths, some terminals can be moved to farther HS
levels. The number of moves at the very most is

∑
k∈V ′

gk ≤
∑
k∈V ′

(dk − dki) ≤ Dn′ ≤ DN . As the

result, the total complexity of the forward recursion and the entire method as a whole is bounded
by O(N2n3D4). Obviously, the complexity of the backward recursion is smaller. By virtue of the
fact that D is bounded from above n, this heuristics has polynomial complexity.

We assumed for calculation of complexity that the operator can be moved to any place on the
chip. In actual fact, it is not always the case, and the areas of admissible operator placement can
be much smaller. We also assumed that in the worst case the upper bounds of delays can coincide
with the critical delay. This assumption also is not realistic. These remarks show promise that the
actual complexity of this approach is much smaller than the upper bound.

5. CONCLUSIONS AND REMARKS

A heuristic polynomial method of concurrent placement of the elements and connections in
compliance with the given logical network realizing in the integrated circuit, for example, calculation
of a Boolean function was presented for the first time. As the result, the area occupied by the

Fig. 6. Example of solution with independent paths (bold lines).
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connections (wires) and the critical delay (time of calculation) are minimized. This is attained by
constructing minimum-length edge-disjoint paths between the operator vertex and their successors
that provide the data. If one fails to construct such paths, then the lengths of some paths are
increased in a special way.

This approach solves a complex problem, but solution is not necessarily possible. Individual
problems of both placement and routing are complicated by themselves, and concurrent placement
and routing make the problem essentially more complicated. Therefore, no admissible solution is
sometimes found by the proposed method, as well as other methods. In these cases, one might
increase the critical delay. Another approach to this case lies in reducing the size of grid cells.
This would provide more possibilities of routing, but increases the number of grid nodes, which
complicates the algorithm.

It deserves noting that in this paper routing was based on constructing the edge-disjoint paths
connecting the terminals and the root vertices. At that, it was admitted that paths intersect at
vertices. Sometimes one needs to seek completely independent paths or, for bilateral routing, to
permit only orthogonal intersection of two paths. In the example of Fig. 3, the paths from the
terminals 3 and 4 have a common vertex 12 which is the turn point of two paths. Sometimes, such
intersections may be forbidden. Constraints of this kind can be easily taken into consideration
in the above scheme of routing. For example, when seeking independent paths in the routing
procedure stored must be a list of the passed (included in the partially constructed path) vertices,
rather than that of the passed edges.

For the case of constructing independent paths, one can readily see (Fig. 5) that terminal 4
lying at level 5 can be connected only to the intermediate vertex 14 (connection (4,12) is forbidden
because vertex 12 is already included in level 2). As the result, we get solution shown in Fig. 6
where all paths are completely independent.

Routing can also take into account other requirements on path lengths within the framework of
the concept of reduction to the HS problem. One of them is represented by identical (or weakly
different) delays in each path [13]. This property is easily taken into account in the HS by positioning
the terminals at one (or neighbor) levels.
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