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The article considers models for monitoring a band with a preset width using
sensor networks shaped as disc covers. Every cover disc is a centred sensor
operation area. The researchers determine a min-density band cover with the
discs of one, two and three radii. The specific requirement for the cover is that
the disc centres shall not be inside the band (external monitoring). Various
efficient cover models are proposed and their characteristics are determined.

Keywords: disc covers; cover density; wireless sensor networks

AMS Subject Classifications: 52C15; 90C27; 51M15

1. Introduction

Wireless sensor network (WSN) consists of sensors that are placed in the monitoring
area and use wireless communication to exchange information. The main sensor func-
tions are to collect data (sensing), primary processing and transmission of collected
data. In this case, the sensing area of each sensor is usually represented as a disk with a
certain radius centred at the location of the sensor, and it is said that the sensor covers
this disk. The mail issue in WSNs is to save the energy of the sensors.[1–3,7,11–13]

A cover of plane region S is such a set of disks C, where each point of the region
belongs to at least one of disk. The cover density is defined as the ratio of the area of
all disks in C to the area of S. Under the regular cover means a cover of the plane
region by disks in which the whole region can be divided into regular polygons (tiles),
forming a regular lattice. In this case, all the polygons should be covered equally.
Obviously, regular covering density is the same for each tile, and coincides with
coverage density of whole region.

Since the sensing energy consumption is proportional to the covered area, the main
task of the WSN – lifetime maximization problem – leads to the problem of construct-
ing minimum density cover. In the literature, a number of coverage models are
proposed that use disks of different radii.[1,3,11,12] The values of the radii are chosen
by solving the problems of minimizing the cover density. The density is a function
(often multi-criteria) of several variables, and the search for the minimum is a difficult
constrained optimization problem, which cannot always be solved analytically.
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The cover effectiveness is characterized by the total overlapping of disks. Most of
the known cover models assume that the sensing ranges R of all sensors are the same.
In this case, the minimum sensing energy consumption is achieved when each triple of
neighbouring sensors forms an equilateral triangle with sides R

ffiffiffi
3

p
.[8] The emergence

of sensors with adjustable sensing ranges provides additional opportunities to improve
the efficiency of the WSN.[1–3,7,11]

The models of regular plane covers using various discs and their placement
structures are considered in [1–5,12]. Among the cover advantages is not only its small
density but constructiveness as well: a simple structure of a cover grid and insignificant
difference among different discs dimensions. So, in [3], comparative characteristics of
the models with triangular and square structures of disc positioning are investigated.
Contribution [4] determines minimal density d ≈ 1.018955 of the cover using discs of
two types without the limitation for the correlation between the disc dimensions. Note
that we have managed to obtain the exact analytical value of this indicator:

d ¼ 2pffiffiffiffiffi
27

p 1�
ffiffiffi
3

p
� tg p

6
�

ffiffiffiffiffi
27

p

12

� �� �
� 1:018955892:

The proof of this result is planned for publication in a separate paper for the nearest
future.

Contribution [5] determines the lower boundaries of the cover densities at preset
correlation q ≥ 1 between the area of large and small discs participating in the plane
coverage. The result specified [4] implies that value q is rather large. Such model is
useless for practical application. When building a sensor net, index q should be as close
to one as possible.

In a sense, the problem of min-density cover determination is more complex and
interesting compared to the problem of packing,[9,10,14] since the adjacent discs may
overlap to a variable extent. Besides, the problems of covers are closely related to the
applications for various areas monitoring by sensor networks that is, at present, rather
topical.[1–3,7,11–13] During monitoring of a real object, we are to take into account its
shape area and boundary extension. A result was obtained by Johnson et al. [6], stating
that the number of unit discs required to cover any simple bound zone with area a and
perimeter p equals to

n ¼ 2affiffiffiffiffi
27

p þ 2p

p
ffiffiffi
3

p þ 1

� �
:

In [7], there are models of min-density band covers with different radii strictly
considering boundary effects that are convenient for applications. In this paper, we
perform similar investigations, however, requiring external monitoring of the area. This
means that, due to some inaccessibility, we cannot place sensors inside the controlled
area.

The paper is structured as follows. Section 2 contains preliminary results related to
general properties of external covers and their connections with plane covers. Section 3
considers two optimal coverage variants by discs of one radius with an equal density,
but a different structure. Several models of covers using discs of two and three radii,
respectively, are studied in sections 4 and 5. The conclusion includes the summary table
with calculations results and brief analysis of the considered coverage models.
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2. Preliminary results

Let a rectilinear band SP with width h be covered with discs,

SP �
[
i2I

Si;

where I denotes a countable set of numbers and {Si} is a set of discs of different radii.
We consider only regular disc covers determined as follows. Let the band be divided
into equal fragments Fj, which are commonly called as tiles.

SP ¼
[
j2J

Fj; l Fj1

\
Fj2

� �
¼ 0 8j1; j2 2 J ;

where μ is a measure of the area. In other words, the adjacent tiles may have only
common boundary sections. Marked fragment F is covered with a finite set of discs,
and all other fragments are covered equally with the same set of discs that is formally
determined with the isometric transformation of plane Tj:

F �
[k
m¼1

Sm; Fj ¼ TjðFÞ; Fj � Tj
[k
m¼1

Sm

 !
; j 2 J : (1)

For a regular band cover, the density is determined correctly:

D ¼
l

Sk
m¼1

Sm

� �
lðFÞ :

The band is covered externally if the cover disc centres lie beyond the band or at its
boundary. During investigations of specific models, the limitations for a number of
different disc dimensions and specificity of these centres positioning in the typical
fragment are agreed in addition. The following optimization problem is formulated in a
general statement:

Problem For the given rectilinear band SP with width h and some suitable typical
fragment F, meeting the condition (1), find a regular outer band disc cover with
minimal density D at some known limitations for the system of cover discs.

For the solution of the problem on the outer band coverage, the following obvious
statements are true.

LEMMA 1 To search for the outer band cover with a minimal density, we need condi-
tion L1: the disc centres should be located at the band boundary. Otherwise, the density
of the cover may always be reduced.

LEMMA 2 The regular outer band coverage with condition L1 determines the regular
cover of the whole plane, which is obtained by multiple reflection of the original band
cover in relation to its boundaries. At that, the band cover density is twice larger than
the respective plane cover density.

Let us explain the last statement with the help of Figure 1. Each disc ‘participates’
in the outer band coverage almost by its half. Full discs are used for the respective
plane cover.
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From Lemma 2, it may be inferred that all effective outer band covers for every
individual class may be found from the respective optimal plane cover. At that, the
known density indicators and important cover parameters may be used.

On the other hand, not every optimal plane cover of a certain type produces a
‘good’ band cover. The plane cover with a complex positioning of discs with different
radii does not allow one to ‘cut out’ a band so that all discs covering it participate in a
cover by their halves.

Let us use the following designations for different classes of covers.

(1) General designation: CovF(n, k), where n is the number of discs applied in a
cover of a typical fragment F; k – a number of different disc’s types participat-
ing in a coverage.

(2) Structural designation: CovF(n: k1/p1, k2/p2,… , kn/pn), where ki is a number of
the i kind discs participating in the coverage of a typical fragment F, pi – parts
of discs of type i covering fragment F.

It is convenient to assume that fragment F is minimal; that is, it cannot be split into
parts, which can also be considered as fragments. For example, for the cover, shown in
Figure 1, a minimal fragment is the right-angled triangle with two equal sides (Figure 2),
and the designations of this cover will be as follows: CovF(2, 2) and CovF(2: 18, 18).
Note that a sign ‘/’ in the second designation may be removed. Both discs covering the
fragment participate in its coverage by their eighths. Other parts of these discs cover
similar fragments that are not shown in the figure.

Figure 1. Example of regular outer cover of a band.

Figure 2. Minimal cover CovF (2: 18, 18) fragment.
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It is also important that, at the minimal fragment, the designations of the band cover
and the respective plane always coincide.

3. Band coverage with discs of one radius

Let us consider the optimal (min-density) plane coverage by the discs of one radius R
having a regular grid of disc positioning.[8] It is easy to notice that it generates two
optimal band covers SA-1(1) and SA-1(2) with the same densities but different struc-
tures (Figure 3).

The main characteristics of the models are:

Model SA-1(1): density DSA�1ð1Þ ¼ 2DA�1 ¼ 4p=
ffiffiffiffiffi
27

p � 2:4184; when R = 2 h/3.
Model SA-1(2): density DSA�1ð2Þ ¼ 2DA�1 ¼ 4p=

ffiffiffiffiffi
27

p � 2:4184; when R = 2 h.

Note that these results might have been obtained during consideration of the
elementary fragments of a cover that determine two of the mentioned coverage options
at a different positioning in a band. Below, we demonstrate this method for more
complicated models.

4. Band coverage with discs of two radii

Covering the plane with the discs of two radii ‘capital’ R and ‘small’ r, we have two
structural models: Model A-2 and Model B-2 (Figure 4). Investigation of these models
is performed in [5]; and we provide their main parameters.

Model A-2: density DA�2 ¼ 11p
18
ffiffi
3

p � 1:1084, when r ¼ Rffiffiffiffi
31

p � 0:1796R:

Model B-2: density DB�2 ¼ 3p
8 � 1:1781, when r ¼ Rffiffi

5
p � 0:4472R:

Figure 3. (1) Model A-1 of plane cover with discs of one radius and the respective models of
band coverage: (2) Model SA-1(1) and (3) Model SA-1(2).
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Model A-2 generates the only efficient Model SA-2 of the outer plane cover
(Figure 5), and Model B-2 determines two Models SB-2(1) and SB-2(2) for two
different options of the band coverage with the same density (Figure 6).

Model SA-2: density DSA�2 ¼ 11p
9
ffiffi
3

p � 2:2168, when R ¼ h
ffiffiffiffi
31

p
3
ffiffi
3

p � 1:0715h;
r ¼ h

3
ffiffi
3

p � 0:19245h.
Model SB-2(1): density DSB�2ð1Þ ¼ 3p

4 � 2:3562, when R ¼ h
ffiffi
5

p
2 � 1:1180h; r ¼ h

2.
Model SB-2(2): density DSB�2ð2Þ ¼ 3p

4 � 2:3562, when R ¼ h
ffiffi
5

p
2
ffiffi
2

p � 0:7906h;
r ¼ h

2
ffiffi
2

p � 0:3536h.

We performed calculations for Models A-2 and SA-2 with a minimal fragment
(Figure 7).

Figure 4. Plane cover models A-2 and B-2.

Figure 5. Outer band coverage Model SA-2.

Figure 6. Outer band coverage models SB-2(1) and SB-2(2).
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Minimal fragment F is the right-angled triangle with acute angles of 30 and 60
degrees. If the hypotenuse equals to a and angle α determines the relative position of
the cover discs, then

lðFÞ ¼ a2
ffiffiffi
3

p

8
; lðSÞ ¼ p � R2

12
þ p � r2

6
;

where R ¼ a
ffiffi
3

p
2 cos a ; r ¼ a

2 1� ffiffiffi
3

p � tan a	 

. After the necessary calculations we obtain the

correlation of the cover density:

DðaÞA�2 ¼
lðSÞ
lðFÞ ¼

p

6
ffiffiffi
3

p ð5þ 9 � tan2 a� 4
ffiffiffi
3

p
� tan aÞ ¼ p

6
ffiffiffi
3

p 3 � tan a� 2ffiffiffi
3

p
� �2

þ 11

3

 !
:

Therefore,

minDA�2 ¼ 11p

18
ffiffiffi
3

p � 1:108433; minDSA�2 ¼ 11p

9
ffiffiffi
3

p � 2:216866; tan a ¼ 2

3
ffiffiffi
3

p

Remark 1 Designation of the cover CovF(2: 112, 16) allows one to determine an average
correlation between the numbers of discs with different dimensions: k1: k2 ¼ 1

12 :
1
6 ¼ 1:2.

Thus, two small discs fall on one large disc. For other classes of covers, this procedure is
correct as well.

5. Band coverage with discs of three radii

We consider a special plane cover with discs of three radii. In Figure 8, there are
elements of this cover and its minimal fragment: Model A-3 of class CovF(3: 14, 12, 12).
It is clear that such plane cover determines the Model SA-3 of the outer band cover
using discs of three different radii. The specific feature of the model is that the fragment
dimension (correlation between the right triangle legs) appears to be an optimization
parameter as well. Note that large discs have the same radius but, at optimal cover

Figure 7. Fragments of models A-3 and SA-3 from the class of CovF (2: 112, 16).
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parameters, the hexagon shown in Figure 8 is slightly stretched across. Considering
designations of the fragment, it means that the following correlations for the angles are
performed: a > 30�; aþ b ¼ 90�.

We perform calculations and provide necessary explanations. For convenience,
consider side BC equal to a (for a band it will be width h). Then, AC ¼ a= tan a,
AB ¼ a= sin a ¼ 2R cosu. From the latter correlation, we obtain the expression for the
large radius: R ¼ a

2 sin a cosu.
From the triangle BCК, we obtain that cos ω = a/R. Therefore,

x ¼ arccos
a

R
¼ arccosð2 sin a cosuÞ:

If L is a small disc centre, then \CBL ¼ xþ ðc� xÞ=2 ¼ ðxþ cÞ=2. Further, we
determine a small radius:

q ¼ a � tgð\CBLÞ � a � tanx ¼ a tan
xþ c
2

� �
� tanx

� �
:

We find an expression for the middle radius r, as a distance between points M and
N. It is easily seen that

xM ¼ a; yM ¼ a � tanð\CBMÞ ¼ a � tan b� u
2

þ c

� �
¼ a � tan 90� � a� u

2
þ c

� �
;

xN ¼ R cosðb� uÞ ¼ R cosð90� � a� uÞ ¼ a

2 sin a cosu
sinðaþ uÞ ¼ a

2
1þ tanu

tan a

� �
;

yN ¼ R � tanðb� uÞ ¼ R= tanðaþ uÞ ¼ a

2
� 1

sin a cosu tanðaþ uÞ ;

r2 ¼ a2
tan a � tanu� 1

2 tan a � tanu
� �2

þ tan
90� � a� u

2
þ c

� �
� 1

2 sin a cosu tanðaþ uÞ
� �2

 !
:

Figure 8. Elements of the plane cover with discs of three radii and the structure of its minimal
fragment CovF(3: 14, 12, 12).
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Considering that lðSÞ ¼ pR2

4 þ pr2
2 þ pq2

2 ; lðFÞ ¼ a2

2 tan a, we obtain the expressions for the
cover density: Dða;u; cÞ ¼ D1 þ D2 þ D3, where

D1 ¼ p � tan a
8ðsin a cosuÞ2 ;

D2 ¼ p � tan a � tan a � tanu� 1

2 tan a � tanu
� �2

þ tan
90� � a� u

2
þ c

� �� 

� 1

2 sin a cosu tanðaþ uÞ
�2
!
;

D3 ¼ p � tan a � tan
xþ c
2

� �
� tanx

� �2
; x ¼ arccosð2 sin a � cosuÞ:

Having determined the minimum, we obtain the following optimal parameters for
the cover density function:

minDA�3 � 1:0928276; minDSA�4 � 2:185655; and a � 29:79�; b � 60:21�;
R � 1:0644a; r � 0:2003a; q � 0:0305a:

Consider one more plane cover with discs of three radii: Model B-3 of class
CovF(3: 14, 14, 12). In Figure 9, there are elements of this cover and its minimal
fragment being a rectangle with the shape close to the square. The structural properties
of this cover also allow one to determine the Model SB-3 of the outer band cover using
discs of three different radii.

We perform calculations using the designations in Figure 9. From the right triangle
with angle α, we obtain R = h/cos α. On the analogy, from the right triangle with angle
β, obtain the expression for the side of a rectangle: AD ¼ R � cos b ¼ h � cos b= cos a.
Hence, we may determine the fragment area: lðFÞ ¼ h2 cos b= cos a.

Further calculations for two other radii are:

Figure 9. Plane cover elements with the discs of three radii and the structure of its minimal
fragment CovF(3: 14, 14, 12).
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r ¼ h� R � sin b ¼ hð1� sin b= cos aÞ; q ¼ h � tanu� h � tan a ¼ h � ðtanu� tan aÞ:

It may be shown that u ¼ 45� þ aþb
2 � c ¼ 45� þ aþb

2 � arctan cos a
cos b

� �
.

For the area of the fragment cover, we obtain:

lðSÞ ¼ p
R2

4
þ r2

4
þ q2

2

� �
¼ h2p

4

1

cos2 a
þ 1� sinb

cos a

� �2
 

þ2 tan 45� þ aþ b
2

� arctan
cos a
cos b

� �� �
� tan a

� �2
!
:

This allows one to write the cover density function:

Dða; bÞ ¼ lðSÞ
lðFÞ ¼

p � cos a
4 cos b

1

cos2 a
þ 1� sinb

cos a

� �2
 

þ2 tan 45� þ aþ b
2

� arctan
cos a
cos b

� �� �
� tan a

� �2
!
:

Having determined the minimum for the function of the cover density, it is possible
to obtain the following optimal parameters:

minDB�3 � 1:15453; minDSB�3 � 2:30906 and a � 16:560; b � 30:4221�;
R � 1:043265h; r � 0:471695h; q � 0:075886h:

Remark 2 Comparing the built models of the outer band covers, it may be noticed that,
adding a new disc size, we use the generalization of the previous models. Therefore, it
may be stated that we have considered all rational covers with discs of one, two, and
three radii. If the models with a large number of different discs are built, the overall
complexity grows (Figure 10), but there is an insignificant decrease of density.

Figure 10. Element of plane and band cover with discs of four CovF(4: 14, 12, 12, 12).
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6. Conclusion and outlook

Several outer band cover models with the best parameters for their class are considered
in the paper. The problem of the areas outer coverage is closely related to the plane
coverage. To some extent, it has its own specificity, and a search for efficient covers
variants is performed in a more ‘compact’ logical space. We may clearly specify all
possible options of a certain class of covers for the mentioned types of fragments and
choose the best ones.

Below, there is a Table 1 of results providing more obvious comparison of the
characteristics of the outer band disc cover models.

In the future, we are planning to consider the construction of min-density regular
outer band covers using ellipses in a three-dimensional space. This generalization of the
problem can be proved, for example, by the following consideration. If a sensor is
equipped with a video camera that is located above the surface and that views the
surface, then the covered region is an ellipse, and its shape depends on such parameters
as object glass height, focus and incidence. It is evident that some covers, using ellip-
ses, can be constructed from the covers that use discs applying the affine transformation
(AT). An AT is a transformation that preserves the coverage density. Examples of ATs
include compression. Suppose we know a small density band cover with discs C, when
the disks centres are located in any places (inside the band, too).[7] Applying an AT
(suitable compression along the band) to cover C, we obtain a cover with ellipses,
which are generated by the sensors located on the border of the band above the surface
(the projection of the sensor location reaches the border).
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3 SB-2(1) CovF(2: 14, 14) D ≈ 2.3562 R ≈ 1.12 h, r = 0.5 h 1:1
4 SB-2(2) CovF(2: 14, 14) D ≈ 2.3562 R ≈ 0.79 h, r ≈ 0.35 h 1:1
5 SA-2 CovF(2: 112, 16) D ≈ 2.2169 R ≈ 1.08 h, r ≈ 0.19 h 1:2
6 SA-3 CovF(3: 14, 12, 12) D ≈ 2.18366 R ≈ 1.06 h, r ≈ 0.20 h, p ≈ 0.03 h 1:2:2
7 SB-3 CovF(3: 14, 14, 12) D ≈ 2.30906 R ≈ 1.04 h, r ≈ 0.47 h, p ≈ 0.076 h 1:1:2
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