
Computers & Operations Research 78 (2017) 557–563
Contents lists available at ScienceDirect
Computers & Operations Research
http://d
0305-05

n Corr
E-m

nenadm
nomad8
journal homepage: www.elsevier.com/locate/caor
Variable neighborhood search variants for Min-power symmetric
connectivity problem

A.I. Erzin a,b, N. Mladenovic b,c, R.V. Plotnikov a,n

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
c University of Valenciennes and Hainaut-Cambresis, Famars, France
a r t i c l e i n f o

Article history:
Received 12 April 2015
Received in revised form
4 March 2016
Accepted 17 May 2016
Available online 20 May 2016

Keywords:
Wireless sensor network
Energy efficiency
NP-hard problem
Variable neighborhood search
x.doi.org/10.1016/j.cor.2016.05.010
48/& 2016 Elsevier Ltd. All rights reserved.

esponding author.
ail addresses: adilerzin@math.nsc.ru (A.I. Erzin
ladenovic12@gmail.com (N. Mladenovic),
7@ngs.ru (R.V. Plotnikov).
a b s t r a c t

We consider the problem of optimal communication tree construction in a given undirected weighted
graph. Such a problem occurs while minimizing the power consumption of data transmission in different
distributed networks in the case when network elements are able to adjust their transmission ranges. In
this paper, the most general strongly NP-hard formulation, when edge weights have arbitrary non-ne-
gative values, is considered. We propose new heuristics, mostly based on variable neighborhood search,
for getting an approximate solution of the problem. Extensive comparative analysis between the pro-
posed methods was performed. Numerical experiments demonstrated the high efficiency of the pro-
posed heuristics.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Min-power symmetric connectivity problem

Elements of many communication networks use wireless commu-
nication for data exchange. Herewith, the energy consumption of a
network's element is proportional to ds, where ≥s 2 and d is the
transmission range [1]. In some networks, e.g., in wireless sensor net-
works, each element (sensor) has a limited energy stored, and its effi-
cient use allows extending the lifetime of thewhole network [10–12]. For
a rational energy usage, a modern sensor can adjust its transmission
range. The problem then is how to find a transmission range (the
transmitter power) for each element that supports a connected subgraph
to minimize the energy consumed. If one supposes an equal signal
propagation in all directions, then all elements inside a disk, whose ra-
dius is equal to the transmission range, receive the data. In this case, we
can suppose that the communication network (a spanning subgraph
whose edges are used for data transmission) is a complete graph
[1,3,9,10]. However, the signal is not always spread equally in all direc-
tions and at any distance. Thus, in the general case, it is necessary to
consider an arbitrary communication graph = ( )G V E, . The commu-
nication energy consumption over each edge could be arbitrary too. If

≥c 0ij is a transmission-related energy consumption needed for sending
),
data from ∈i V to ∈j V , then in the connected subgraph
= ( ′) ′ ⊆T V E E E, , the energy consumption of node ∈i V equals to
( ) = ( )∈ ′E T cmaxi j i j E ij: , . The goal of this paper is the development of al-

gorithms for the construction of a spanning subgraph T that minimizes
∑ ( )∈ E Ti V i . Without loss of generality, we assume that subgraph T is a
spanning tree. The problem can then be formulated in the followingway.

1.2. Combinatorial formulation

Given a simple undirected weighted graph = ( )G V E, with a
vertex set V, | | =V n, and an edge set E, find a spanning tree T* of G,
which is the solution to the following problem:

∑( ) = →
( )∈ ∈ ( )

W T cmax min,
1i V j V T

ij
Ti

where Vi(T) is the set of vertices adjacent to vertex i in tree T and
≥c 0ij is the weight of the edge ( ) ∈i j E, .
Any feasible solution of (1), i.e., a spanning tree of G, will be

called a communication tree (subgraph). It is known that (1) is
strongly NP-hard [1,5,6,9], and if ≠N NP, then the problem is in-
approximable within +1 1

260
[6]. Therefore, the construction and

analysis of efficient approximation algorithms are some of the
most important issues regarding the research on this problem.

1.3. Literature review

It is shown in [1] that a minimal spanning tree (a spanning tree
with minimal total edge weights) is a 2-approximation solution to

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2016.05.010
http://dx.doi.org/10.1016/j.cor.2016.05.010
http://dx.doi.org/10.1016/j.cor.2016.05.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.05.010&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.05.010&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.05.010&domain=pdf
mailto:adilerzin@math.nsc.ru
mailto:nenadmladenovic12@gmail.com
mailto:nomad87@ngs.ru
http://dx.doi.org/10.1016/j.cor.2016.05.010
http://dx.doi.org/10.1016/j.cor.2016.05.010


A.I. Erzin et al. / Computers & Operations Research 78 (2017) 557–563558
the problem (1). In [5], a more precise ratio estimate for a minimal
spanning tree was reported. In the same paper, a set of heuristic
algorithms were proposed and their a posteriori analysis was
performed. Since we were not completely satisfied with the
quality of the results obtained, in [4] we proposed a hybrid
heuristic that combines genetic algorithm (GA) with variable
neighborhood search (VNS) [8]. Two new local search heuristics
for the problem were proposed in [4]. These two heuristics are
used then as a mutation operator in the GA. For the sake of
completeness, we will recall both these local search heuristics in
this paper. Computational results showed the high efficiency of the
proposed hybrid heuristic.

1.4. Contribution

In this paper, we propose different heuristics based on a vari-
able neighborhood search metaheuristic [2,7,8]. The contribution
of this paper may be summarized as follows:

� A new local search heuristic that is based on elementary tree
transformation (ETT) is proposed. In terms of solution quality, it
significantly outperforms the previous one (named as local
improvement (LI)), but uses more computation time.

� Several basic VNS- and general VNS-based heuristics are pro-
posed and tested. Some of these new heuristics give results
with better quality than recent state-of-the-art (hybrid heuristic
[4]) techniques, especially for solving more realistic large-size
problems.

1.5. Outline

In the next section, rules on new VNS-based heuristics are
given.

In Section 3, an extensive computational analysis is described,
while Section 4 concludes the paper.
2. Variable neighborhood based heuristics

2.1. Basic VNS and general VNS

As mentioned earlier, we use the VNS metaheuristic idea to get
an approximate solution of (1). We use two well-known schemas:
basic VNS, wherein only one neighborhood structure is used in the
local search phase, and general VNS, which uses a variable
neighborhood descent (VND) approach in the local search phase.
Detailed descriptions of both these methods can be found in [7,8].

2.2. Local searches

For efficiency purposes, some of the below algorithms require
the solution (i.e., a tree) to be an oriented tree = ( )T v V A, ,0 , where
v0 is the root and A is a set of arcs oriented from the root. Although
the choice of the root vertex may affect the result of the proposed
algorithms, we do not declare any special conditions for this
choice, as we always take the first vertex of the entire array of
vertices as the root.

To further clarity of exposition, let us introduce the notion of an
arc's (or edge's) drop. Suppose that an arc (or an edge) a does not
belong to the graph ′ ⊂G G. Let us call the drop of a in relation to ′G
as the value of ( ′ ∪ { }) − ( ′)W G a W G . In the same manner, let us
define the drop of an arc (or edge) set. Suppose that an arc (or
edge) set A does not belong to the graph ′ ⊂G G. Let us call the drop
of A in relation to ′G as the value of ( ′ ∪ ) − ( ′)W G A W G .

The first local search procedure we used in basic VNS and in
general VNS is LI from [4]; it is presented in Algorithm 1. In this
algorithm, sorting is performed using all arcs in decreasing values
of the drop in relation to the rest of the tree in step 5. After that,
for each arc, an attempt to remove it from the tree (step 8) and add
an arc with the minimum drop (steps 9–10) is performed. This
procedure is repeated while the solution is improved.

The second algorithm used in basic VNS and general VNS as the
local search procedure is ETT (see Algorithm 2). Let us briefly
describe ETT. In steps 4–12, within one iteration of the while loop,
all non-adjacent vertex pairs are considered. For each such pair
{ }i j, an attempt to add an arc ( )i j, to a tree (see step 6) and remove
an arc with the maximum drop from the obtained cycle (see steps
7 and 8) is performed. This procedure is repeated while the so-
lution is improved.

Algorithm 1. LI

1: Input: initial solution = ( )T v V A, ,0 is a tree rooted in v0;
2: ←improved true;
3: while improved do
4: ←improved false;
5: Sort A by decreasing of the drops;
6: for all arcs ( )i j, in A do
7: Let B be a subtree of T where j is the root;
8: ← ⧹( ∪ {( )})R T B i j, ;
9: Find a vertex k from all vertices of R such that the drop of
the arc (k, j) is minimum;

10: ′ ← ( ⧹{( )}) ∪ {( )}T T i j k j, , ;

11: if ′T is better than T
12: ← ′T T ;
13: ←improved true;
14: end if
15: end for
16: end while

Algorithm 2. ETT.

1: Input: initial solution = ( )T v V A, ,0 is a tree rooted in v0;

2: ←improved true;
3: while improved do
4: ←improved false;
5: for all non-adjacent vertex pairs i and j of T do
6: Set ′ ← ∪ {( )}T T i j, ;
7: Find an arc a of a cycle in ′T with the maximum drop;
8: ′ ← ′⧹{ }T T a ;

9: if ′T is better than T then
10: ← ′T T ; ←improved true;
11: end if
12: end for
13: end while

In [4] a VND approach with three neighborhood structures for
local search (N1, N2, and N3) was proposed; we also use this pro-
cedure as part of general VNS. Let us define these neighborhood
structures. Let T be a spanning tree of G. Then

( ) = { ′ = ( ′) ⊂ | − | ′⧹ | ≤ }

=

N T T v V A G T V A A k

k

, , spanning tree on ; ,

1, 2, 3.

k 0

In other words, the number of different edges in T and ′T is less
than or equal to k. Regarding the efficiency of the search, the
question is whether to enumerate all the trees that belong to Nk(T)
or not, since their number increases exponentially with respect to
k. Another question also is how to perform a search in these
neighborhoods. There are some obvious strategies: (i) add k edges



A.I. Erzin et al. / Computers & Operations Research 78 (2017) 557–563 559
to T and then remove another k edges to get tree ′T ; (ii) remove k
edges from T to get +k 1 subtrees and then add another k edges to
get spanning tree ′T ; (iii) repeat the add/remove actions for k times
(i.e., k consecutive ETT moves); (iv) repeat the remove/add se-
quence for k times. In [4], a VND approach that uses three
neighborhood structures (N1, N2, and N3) was proposed and used
in the GA. Search through these three neighborhoods is organized
as in variant (ii) of the above, i.e., k edges are removed from T and
then another k edges are added to the obtained graph. Moreover,
the removed edges are taken at random, whereas the best possible
edges to add are selected thereafter. Thus, procedures that explore
N1,N2, and N3 in a semi-random fashion are not classical local
search procedure since they do not guarantee that the obtained
solution is a local optimum. Nevertheless, a VND algorithm that
uses those three algorithms appears to be efficient. In this paper,
the same VND-based method is used as the local search procedure
in the general VNS as well.

Let us briefly describe the procedures that explore the neigh-
borhoods N1,N2, and N3 in a semi-random way (sometimes called
intensified shaking). In the procedure of “Move in N1”, which is
presented in Algorithm 3, one randomly chosen edge is excluded
from the tree in step 3 and then the best edge connecting the two
obtained components is found in step 4. In the same manner,
within the procedure of “Move in N2”, which is presented in Al-
gorithm 4, two randomly chosen edges are excluded from the tree,
splitting it into three connected components (steps 2 and 3). In the
remaining steps 4–16, the two best edges connecting these com-
ponents are found: in step 4, an attempt to find the best pair of
adjacent edges is performed; in step 9, the three best edges con-
necting the components are found; and in steps 11–16, the best
two of them are chosen. In the procedure of “Move in N3”, which is
presented in Algorithm 5, three edges are removed from the initial
tree in step 2, and then in step 3, for each pair of the four obtained
components, the connecting edge with the minimum value of drop
is found; after that, by solving the minimal spanning tree problem,
we can find the three edges connecting the obtained components
in steps 4–6.

Algorithm 3. Move in N1

1: Input: initial solution = ( )T v V A, ,0 is a tree rooted in v0;
2: Choose an arc = ( )a i j, from Twith a probability proportional
to the drop of the objective function;

3: By excluding (i, j) from T, divide T into two components: a
root component R, where i is a leaf, and a branch component
B, where j is the root;

4: Find a vertex k from all the vertices of R such that the drop of
the arc ( )k j, is minimum;

5: Return ( ⧹{( )}) ∪ {( )}T i j k j, , .

Algorithm 4. Move in N2

1: Input: initial solution = ( )T V E, is a tree (orientation is not
taken into account);

2: Choose two random edges, e1 and e2, with a probability
proportional to drop;

3: Find three connected components, C0, C1, and C2, after re-
moving the two chosen edges;

4: Find a pair of edges, bestEdge1 and bestEdge2, that connect
the three components, have a common vertex in one com-
ponent, and have the minimum drop in relation to

∪ ∪C C C0 1 2. Set ′ = ∪ ∪ ∪ { } ∪ { }T C C C bestEdge bestEdge0 1 2 1 2 ;

5: If ( ′) < ( )W T W T then
6: Set ← ′T T ;
7: End if
8: For all ∈ { }i 0, 1, 2 do
9: Find an edge, candidateEdgei, that connects Ci and

[( + ) ]C i 1 mod3 and that has the minimum drop in relation to

∪ [( + ) ]C Ci i 1 mod3 .

10: End for
11: For all ∈ { }i 0, 1, 2 do
12: Set

′ = ∪ ∪ ∪ { } ∪ { }[( + ) ]T C C C candidateEdge candidateEdgei i0 1 2 1 mod3 ;

13: If ( ′) < ( )W T W T then
14: Set ← ′T T ;
15: End if
16: End for
17: Return T.

Algorithm 5. Move in N3

1: Choose three edges, e1, e2, and e3, with a probability pro-
portional to the drop in relation to the remaining graph;

2: Construct four connected components after the deletion of
these edges;

3: Find all six edges that connect these components with
minimum drops;

4: Construct a complete edge-weighted graph on four vertices
whose vertices correspond to the connected components and
whose edges have the minimum drops in relation to the
components;

5: Find a minimal spanning tree (MST) on the constructed graph;
6: Let e4, e5, and e6 be the edges of the obtained MST;
7: Return ( ⧹{ }) { }T e e e U e e e, , , ,1 2 3 4 5 6 .

Algorithm 6. Shaking

1: Input: initial solution = ( )T v V A, ,0 is a tree rooted in v0;
2: ←i 1;
3: while ≤i k do
4: Select two different vertices i and j of V at random;
5: If ( ) ∈i j A, then
6: continue;
7: End if
8: ′ ← ∪ {( )}A A i j, ;
9: Let ⊆ ′C A be a cycle containing (i, j); select at random an
arc ∈a C;

10: ′ ← ′⧹{ }A A e ;

11: ← ( ′)T V A, ;
12: End while

2.3. Shaking

For the procedure Shaking, which is used in basic VNS and gen-
eral VNS, we propose a new algorithm, a pseudo code of which is
presented in Algorithm 6. In step 4, two di erent vertices are selected;
then, in case they are not adjacent, the arc connecting these vertices
is added to the tree in step 8; after that, a randomly selected arc is
excluded from the obtained cycle in step 10. Such attempt to replace
an arc is repeated k times. Let kmax be the maximum number of arc
replacements by the Shaking procedure. Note that kmax is a free
parameter of all the considered VNS heuristics. The best value of this
parameter is estimated experimentally.

2.4. VNS-based heuristics

We propose two basic VNS approaches based on LI and ETT:

� BVNS_LI: LI is used as a local search procedure;



Fig. 1. Ratio in the case of the small dimension ( ≤n 30). (a) Ratio of local search procedures LI, ETT, and VND and basic VNS with these local search procedures: BVNS_LI,
BVNS_ETT, and GVNS_N. (b) Ratio of the general VNS: GVNS_11, GVNS_12, GVNS_21, GVNS_22, and GVNS_N. (c) Ratio of the hybrid genetic algorithms GA_LI and GA_VND.

A.I. Erzin et al. / Computers & Operations Research 78 (2017) 557–563560
� BVNS_ETT: ETT is used as a local search procedure.

Both algorithms (LI and ETT) can be combined in the general
VNS algorithm. Moreover, in each step of the general VNS, the best
neighbor instead of the local optimum can be found. For this
purpose, let us introduce algorithms LI_1 and ETT_1, which are the
same as LI and ETT, respectively, except that they stop after the
first improvement. Thus, we propose five algorithms based on the
general VNS schema:

� GVNS_11: Within a local search phase, LI is performed first, then
— ETT;

� GVNS_12: Within a local search phase, ETT is performed first,
then — LI;

� GVNS_21: Within a local search phase, LI_1 is performed first,
then — ETT_1;

� GVNS_22: Within a local search phase, ETT_1 is performed first,
then — LI_1;

� GVNS_N: N1, N2, and N3 from the VND proposed in [4] are used
as neighborhood structures.
3. Simulation

All the proposed algorithms have been implemented in Cþþ
using the Visual Studio 2010 Integrated Development Environment. A
simulation was executed for =n 10, 15, 20, 25, 30, 50, 150, 200. For
the same dimension, 100 different instances were generated. For each
instance, a required number of points were scattered on a square area.
After this, a complete edge-weighted graph whose vertices corre-
sponded to the points and whose edge weights were equal to the
squared distances between points was defined. Then a minimal
spanning tree for use as an initial approximate solution in all the al-
gorithms was constructed. As a data structure for storing a feasible
solution of the problem, we used a tree wherein each element stores a
pointer to its parent vertex (or a null pointer in the case of the root)
and the list of its direct successors. The experiment was performed on
an Intel Core i5–3470 (3.2 GHz) 8 Gb machine.

For the small dimension ( ≤n 30), we defined the parameters of
the problem formulation as an integer linear programming pro-
blem (ILP), as proposed in [5], and then we obtained the optimal
solution using the IBM ILOG CPLEX package. Thus, for ≤n 30, we
computed the exact value of the ratio, which was expressed by the
value of ( ) ( *)W T W T/A , where WA(T) is the value of the objective
function of the solution constructed by algorithm A and ( *)W T is
the optimal value of the objective function. In the case of larger
dimensions, the upper bound of the ratio was calculated by the
formula ( ) ( ( *))W T LB W T/A , where ( ( *))LB W T is the lower bound for

( *)W T . As a value of ( ( *))LB W T , the sum of the weights of the
minimal spanning tree edges was taken (see [5]).

For the VNS-based heuristics, it is necessary to define the
parameter kmax. For this goal, each algorithm was run on the same
instances with different values of kmax. It appeared that, beginning
from =k 30max , on average, the ratio of the obtained solution
did not decrease significantly, whereas the runtime of some
algorithms increased up to twice, while kmax increased by 10.
Moreover, on average, the runtime of all the algorithms remained
accessible for =k 30max . Therefore, in all the VNS-based algo-
rithms, we set =k 30max .



Fig. 2. Ratio upper estimates in the case of the large dimension ( ≤ ≤n50 200). (a) Ratio upper estimate of local search procedures LI, ETT, and VND and basic VNS with these
local search procedures: BVNS_LI, BVNS_ETT, and GVNS_N. (b) Ratio upper estimate of the general VNS: GVNS_11, GVNS_12, GVNS_21, GVNS_22, and GVNS_N. (c) Ratio upper
estimate of the hybrid genetic algorithms GA_LI and GA_VND.

A.I. Erzin et al. / Computers & Operations Research 78 (2017) 557–563 561
Let us introduce the algorithms that were considered in the
graphics. Algorithms LI, ETT, VND, BVNS_LI, BVNS_ETT, GVNS_11,
GVNS_12, GVNS_21, GVNS_22, and GVNS_N were described in
Section 2; the hybrid genetic algorithms GA_LI and GA_VND were
described in [4]; a minimal spanning tree is denoted as MST.

In Fig. 1, the ratios of the solutions yielded by the algorithms
for ≤n 30 are presented. On average, in cases when the exact
values of the ratio could be computed (i.e., when ≤n 30), algo-
rithms GA_VND and GVNS_* yielded solutions whose objectives
differed from the optimal one by not more than 0.6%. At the same
time, the solutions closest to the optimal solutions were those
constructed by GVNS_12 and GA_VND: they both yielded ratios
that did not exceed 1.0003. It was found that a hybrid GA,
GA_VND, which uses VND as a mutation operator, on average,
yielded a significantly better solution than GVNS_N, which is
based on the same VND procedure (the second one is faster,
however; see Fig. 3). It should be noted that the algorithm ETT, on
average, yielded a solution whose objective differed from the op-
timal one by at most 0.7% (for comparison, on average, the ob-
jective of the solution yielded by another local search LI differed by
about 3% from the objective of the optimal solution when

≤ ≤n25 30).
The experiment results for the case of ≤ ≤n50 200 (see Fig. 2)

showed that the main trends found in the case of small values of n
regarding the majority of the algorithms persisted for the larger
dimensions. However, one can distinguish algorithm GA_LI, whose
solution quality became significantly worse in relation to
algorithms GVNS_*, ETT, and BVNS_ETT while n grew. The ratio
estimate graphics of the last ones were almost parallel to each
other, which means that they had similar dynamics of ratio esti-
mate that changed with growing n. The most accurate solution
was again constructed by GVNS_12. Furthermore, in decreasing
order, the graphics of the ratio estimates of BVNS_ETT, GVNS_21,
GVNS_11 (these three algorithms had almost confluent graphics of
ratio estimate), GA_VND, ETT, GVNS_22, and GVNS_N are depicted
in Fig. 2. Herein the difference between the maximum value of the
estimates of the aforementioned algorithms and the minimum one
did not exceed 2%, e.g., when n¼200, the ratio estimate of
GVNS_12 was 29% and that of GVNS_N was 31%.

In Table 1, a percentage of the cases when optimal solutions
were constructed is presented. One can see that, in the case of the
small dimension, both algorithms GVNS_12 and GA_VND almost
always constructed an optimal solution: in the worst-case scenario
(when n¼30), the algorithm GVNS_12 constructed an optimal
solution in 95% of the cases and GA_VND in 93% of the cases
(again, when n¼30). It can be seen that the percentage of op-
timality of the other algorithms dropped down while n grew.
These algorithms can be conventionally divided into two groups:
(a) GVNS_21, BVNS_ETT, GVNS_11, GVNS_22, GVNS_N, ETT, and
GA_LI, whose optimality percentage was not less than 45%; and
(b) MST, VND, LI, and BVNS_LI, whose optimality percentage in the
worst case (i.e., when n¼30) did not exceed 5%. In general, it
matches the results presented in Fig. 1.

The graphics in Fig. 3 show the change in the runtime with
growing n. Notice that the algorithms GVNS_N and ETT worked
rather fast (when n¼200, on average, they solved the problem in
less than 0.5 seconds), and, at the same time, as mentioned pre-
viously, on average, they yielded rather accurate solution. The
most accurate algorithm, GVNS_12, worked for about 43 seconds
when n¼200, but the algorithm GA_VND, whose ratio was close to
that of GVNS_12, solved the problem more than ten times faster in
the case of n¼200. Here we should note that all the GAs were well



Fig. 3. Running time. (a) Running time of local search procedures LI, ETT, and VND and basic VNS with these local search procedures: BVNS_LI, BVNS_ETT, and GVNS_N.
(b) Running time of the general VNS: GVNS_11, GVNS_12, GVNS_21, GVNS_22, and GVNS_N. (c) Running time of the hybrid genetic algorithms GA_LI and GA_VND.

Table 1
Percentage of the cases when the optimal solution was obtained by the algorithm.

n MST LI ETT VND GA_LI GA_VND BVNS_LI BVNS_ETT GVNS_11 GVNS_12 GVNS_21 GVN_22 GVNS_N

10 23 57 84 51 98 98 90 99 98 99 98 97 100
15 11 37 74 25 97 100 67 94 93 99 99 96 96
20 3 22 61 13 79 100 29 89 86 98 86 85 88
25 1 4 48 2 59 95 13 88 85 97 84 77 71
30 0 4 47 2 46 93 5 82 80 95 89 69 51

A.I. Erzin et al. / Computers & Operations Research 78 (2017) 557–563562
parallelized, i.e., they used four parallel threads. Algorithm
GVNS_21 was the slowest one: on average, it worked for about 60
seconds when n¼200. All the other VNS-based heuristics turned
out to be faster than GVNS_12 but slower than GA_VND. Notice
that the algorithm BVNS_ETT worked, on average, for about 29
seconds when n¼200; in the case of large dimensions, it also
yielded a more accurate solution than GA_VND.
4. Conclusion

In this paper, we have proposed new heuristics based on the
variable neighborhood search (VNS) approach for finding approximate
solutions of the optimal communication tree synthesis problem. The
proposed algorithms were compared between one another and also
with the algorithms recently proposed in [4]. The majority of the
proposed VNS-based variants appeared to be rather efficient. However,
the most effective, on average, appeared to be the general VNS algo-
rithm named GVNS_12, which sequentially uses elementary tree
transformation (ETT) and the so-called local improvement (LI) as local
search routines in the VNS. In the case of large dimensions, the algo-
rithms GVNS_21 and BVNS_ETT, on average, yielded a better solution
than the hybrid genetic algorithm GA_VND from [4], but spent more
computing time. Moreover, an ETT local search procedure proposed in
this paper took more time than the known LI, but it constructed so-
lutions of significantly better quality. In general, in the case of suc-
cessive choice of neighborhood structures for the local search proce-
dure, the VNS approach is justified for the efficient solution of (1).
Acknowledgments

The research of A. Erzin is partly supported by the Russian
Foundation for Basic Research (Grant no. 16-07-00552). The



A.I. Erzin et al. / Computers & Operations Research 78 (2017) 557–563 563
research of N. Mladenovic is partly supported by the Ministry of
Education and Science, Republic of Kazakhstan (Institute of In-
formation and Computer Technologies) (Project no. 0115PK00546).
The research of R. Plotnikov is partly supported by the Russian
Foundation for Basic Research (Grant no. 16-37-60006).
Appendix A. Supplementary data

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.cor.2016.05.010.
References

[1] Althaus E, Calinescu G, Mandoiu I, Prasad S, Tchervenski N, Zelikovsky A.
Power efficient range assignment for symmetric connectivity in static ad hoc
wireless networks. Wirel Netw 2006;12(3):287–99.

[2] Brimberg J, Urosevic D, Mladenovic N. Variable neighborhood search for the
vertex weighted k-cardinality tree. Eur J Oper Res 2006;171:74–84.
[3] Carmi P, Katz M. Power assignment in radio networks with two power levels.
Algorithmica 2007;47:183–201.

[4] Erzin A, Plotnikov R. Using VNS for the optimal synthesis of the commu-
nication tree in wireless sensor networks. Electron Notes Discret Math
2015;47:21–8.

[5] Erzin A, Plotnikov R, Shamardin Y. On some polynomially solvable cases and
approximate algorithms in the optimal communication tree construction
problem. J Appl Ind Math 2013;7:142–52.

[6] Fuchs B. On the hardness of range assignment problems, Tech. rep. TR05–113,
electronic colloquium on computational complexity; 2005.

[7] Hanafi S, Lazic J, Mladenovic N, Wilbaut C, Crevits I. New variable neigh-
bourhood search based 0-1 MIP heuristics. Yugosl J Oper Res 2015. http://dx.
doi.org/10.2298/YJOR140219014H.

[8] Hansen P, Mladenovic N. Variable neighborhood search: principles and ap-
plications. Eur J Oper Res 2001;130:449–67.

[9] Kirousis L, Kranakis E, Krizanc D, Pelc A. Power consumption in packet radio
networks. Theor Comput Sci 2000;243:289–305.

[10] Pottie G, Kaiser W. Wireless integrated network sensors. Commun ACM
2000;43(5):51–8.

[11] Wu J, Yang S. Energy-efficient node scheduling models in sensor networks
with adjustable ranges. Int J Found Comput Sci 2005;16(1):3–17.

[12] Zhang H, Hou J. Maintaining sensing coverage and connectivity in large sensor
networks. Ad Hoc Sens Wirel Netw 2005;1(1–2):89–124.

http://dx.doi.org/10.1016/j.cor.2016.05.010
http://refhub.elsevier.com/S0305-0548(16)30117-4/sbref1
http://refhub.elsevier.com/S0305-0548(16)30117-4/sbref1
http://refhub.elsevier.com/S0305-0548(16)30117-4/sbref1
http://refhub.elsevier.com/S0305-0548(16)30117-4/sbref1
http://refhub.elsevier.com/S0305-0548(16)30117-4/sbref2
http://refhub.elsevier.com/S0305-0548(16)30117-4/sbref2
http://refhub.elsevier.com/S0305-0548(16)30117-4/sbref2
http://refhub.elsevier.com/S0305-0548(16)30117-4/sbref3
http://refhub.elsevier.com/S0305-0548(16)30117-4/sbref3
http://refhub.elsevier.com/S0305-0548(16)30117-4/sbref3
http://refhub.elsevier.com/S0305-0548(16)30117-4/sbref4
http://refhub.elsevier.com/S0305-0548(16)30117-4/sbref4
http://refhub.elsevier.com/S0305-0548(16)30117-4/sbref4
http://refhub.elsevier.com/S0305-0548(16)30117-4/sbref4
http://refhub.elsevier.com/S0305-0548(16)30117-4/sbref5
http://refhub.elsevier.com/S0305-0548(16)30117-4/sbref5
http://refhub.elsevier.com/S0305-0548(16)30117-4/sbref5
http://refhub.elsevier.com/S0305-0548(16)30117-4/sbref5
http://dx.doi.org/10.2298/YJOR140219014H
http://dx.doi.org/10.2298/YJOR140219014H
http://dx.doi.org/10.2298/YJOR140219014H
http://dx.doi.org/10.2298/YJOR140219014H
http://refhub.elsevier.com/S0305-0548(16)30117-4/sbref7
http://refhub.elsevier.com/S0305-0548(16)30117-4/sbref7
http://refhub.elsevier.com/S0305-0548(16)30117-4/sbref7
http://refhub.elsevier.com/S0305-0548(16)30117-4/sbref8
http://refhub.elsevier.com/S0305-0548(16)30117-4/sbref8
http://refhub.elsevier.com/S0305-0548(16)30117-4/sbref8
http://refhub.elsevier.com/S0305-0548(16)30117-4/sbref9
http://refhub.elsevier.com/S0305-0548(16)30117-4/sbref9
http://refhub.elsevier.com/S0305-0548(16)30117-4/sbref9
http://refhub.elsevier.com/S0305-0548(16)30117-4/sbref10
http://refhub.elsevier.com/S0305-0548(16)30117-4/sbref10
http://refhub.elsevier.com/S0305-0548(16)30117-4/sbref10
http://refhub.elsevier.com/S0305-0548(16)30117-4/sbref11
http://refhub.elsevier.com/S0305-0548(16)30117-4/sbref11
http://refhub.elsevier.com/S0305-0548(16)30117-4/sbref11

	Variable neighborhood search variants for Min-power symmetric connectivity problem
	Introduction
	Min-power symmetric connectivity problem
	Combinatorial formulation
	Literature review
	Contribution
	Outline

	Variable neighborhood based heuristics
	Basic VNS and general VNS
	Local searches
	Shaking
	VNS-based heuristics

	Simulation
	Conclusion
	Acknowledgments
	Supplementary data
	References




