
This article was downloaded by: [Professor Adil Erzin]
On: 14 October 2013, At: 19:31
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Optimization: A Journal of
Mathematical Programming and
Operations Research
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/gopt20

Covering a plane with ellipses
A.I. Erzinac & S.N. Astrakovbc

a Sobolev Institute of Mathematics, Discrete Optimization in
Operations Research, Novosibirsk, Russia.
b Design Technological Institute of Digital Techniques, Novosibirsk,
Russia.
c Novosibirsk State University, Novosibirsk, Russia.
Published online: 03 Sep 2013.

To cite this article: A.I. Erzin & S.N. Astrakov (2013) Covering a plane with ellipses, Optimization:
A Journal of Mathematical Programming and Operations Research, 62:10, 1357-1366, DOI:
10.1080/02331934.2013.830119

To link to this article:  http://dx.doi.org/10.1080/02331934.2013.830119

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the
“Content”) contained in the publications on our platform. However, Taylor & Francis,
our agents, and our licensors make no representations or warranties whatsoever as to
the accuracy, completeness, or suitability for any purpose of the Content. Any opinions
and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content
should not be relied upon and should be independently verified with primary sources
of information. Taylor and Francis shall not be liable for any losses, actions, claims,
proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or
howsoever caused arising directly or indirectly in connection with, in relation to or arising
out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &

http://www.tandfonline.com/loi/gopt20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/02331934.2013.830119
http://dx.doi.org/10.1080/02331934.2013.830119


Conditions of access and use can be found at http://www.tandfonline.com/page/terms-
and-conditions

D
ow

nl
oa

de
d 

by
 [

Pr
of

es
so

r 
A

di
l E

rz
in

] 
at

 1
9:

31
 1

4 
O

ct
ob

er
 2

01
3 

http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


Optimization, 2013
Vol. 62, No. 10, 1357–1366, http://dx.doi.org/10.1080/02331934.2013.830119

Covering a plane with ellipses

A.I. Erzinac∗ and S.N. Astrakovbc

aSobolev Institute of Mathematics, Discrete Optimization in Operations Research,
Novosibirsk, Russia; bDesign Technological Institute of Digital Techniques, Novosibirsk, Russia;

cNovosibirsk State University, Novosibirsk, Russia

(Received 28 September 2012; accepted 14 July 2013)

This paper is devoted to the construction of regular min-density plane coverings
with ellipses of one, two and three types. This problem is relevant, for example,
to power-efficient surface sensing by autonomous above-grade sensors. A similar
problem, for which discs are used to cover a planar region, has been well studied.
On the one hand, the use of ellipses generalizes a mathematical problem; on the
other hand, it is necessary to solve these types of problems in real applications
of wireless sensor networks. This paper both extends some previous results and
offers new regular covers that use a small number of ellipses to cover each regular
polygon; these covers are characterized by having minimal known density in
their classes and give the new upper bounds for densities in these classes as
well.

Keywords: wireless sensor networks; plane covering; coverage density

AMS Subject Classifications: 52C15; 90C27; 51D20; 5115; 5125; 65K10; 74P20

1. Introduction

In wireless sensor networks (WSNs), the sensing area of each sensor is usually a disc with
a sensor located at the centre of the disc.[1–5] It is said that the sensor covers the disc or
that the disc is the sensing region of the sensor. In WSNs, each sensor is supplied with a
limited amount of non-renewable energy, and its lifetime is inversely proportional to the
covered area. Therefore, an optimal cover of a planar region with discs or ellipses (when
every point of a region belongs to at least one disc or ellipse) is the cover that has minimal
density, where the density of the plane region’s cover is the ratio of the sum of the elements’
areas in the cover to the region’s area.[4–8,11,13]

Since every disc can be placed at any place of a plane, there is an infinite set of plane
covers using discs.[4,7,8,13] The most studied covers are regular covers,[2–6,9,10] where
a planar region is tiled by identical regular polygons (tiles), and all of the tiles are covered
equally. In this case, the density of the planar cover is defined by the coverage density of
one tile. Note that only three types of regular polygons tile a plane: triangle, square and
hexagon. In [5], we introduced the classification of regular covers, according to which cover
in class C OVk(p, q) covers each regular k-angle polygon by p discs of q different radii.
For example, Figure 1(a) shows a fragment (one triangular tile) of the regular plane cover in
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1358 A.I. Erzin and S.N. Astrakov

the class C OV3(7, 3). In this cover, we denote it as C3(7, 3), the centres of equal pairwise
intersecting discs are located in the nodes of a triangular tile, and a curvilinear triangle in
the centre of the tile is covered by one disc with a lesser radius and by three equal discs.
Note that when calculating the density of the planar cover for this case, one must consider
that each disc that has its centre in the node of a tile participates in covering six tiles. If the
centre of disc lies on the side of the tile, then the disc participates in covering two tiles. And
the disc that has its centre inside the tile participates in covering only one tile. Then, the
density of the cover C3(7, 3) is the minimum (i.e. the radii of discs in C3(7, 3) are optimal)
ratio of the areas of three sectors (the parts of discs with centres in the nodes of a tile) plus
area of one disc with the centre in the centre of a tile and plus the areas of three equal discs
to the tile’s area.

In regular covers, the sensors are located at certain points in the plane; but sometimes it is
impossible to place the sensor exactly at a specific point (contaminated area, out-of-the-way
place, enemy territory, etc.). However, even when sensors are distributed randomly in the
sensing region, regular covers are used to evaluate the efficiency of the sensing (specifically,
to estimate the lower bound of a WSN’s lifetime).[11] Therefore, the investigation of regular
covers remains topical.

In this paper, we consider the construction of min-density regular plane covers using
ellipses of one, two and three types. This generalization of the problem (in comparison with
the case in which the covers are made of discs) can be proved; for example, by the following
consideration. If a sensor is equipped with a video camera that is located above the surface
and that views the surface, then the covered region is an ellipse, and its form depends on
such parameters as the height, the focus and the incidence of the object glass. If one knows
the optimal (min-density) cover, then it is easy to estimate the parameter’s values too.

The notation of the cover class C OVk(p, q) remains the same as in [5], but in this
paper p is the number of ellipses that cover one regular k-angle polygon (tile), and q is the
quantity of different types of ellipses in the cover. Additionally, we consider that ellipses
that have equal half-axles are equal (i.e. the congruous ellipses are equal). We will use
notation Ek(p, q) for min-density cover having special structure in the class C OVk(p, q).
Here, the structure is a coverage model which is determined by the geometric relationships
of ellipses.

Definition 1.1 Consider a cover of one tile in the class C OVk(p, q). Renumber the ellipses
covering a tile and denote by et

i the i-th ellipse of type t , t = 1, . . . , q, i = 1, . . . , nt , where
nt is a quantity of ellipses of type t covering one tile. Obviously,

∑q
t=1 nt = p. The type

t of an ellipse is defined by the sizes of its semi-axes a(t) and b(t). Denote by A(et
i ) tile

area, where it can be located centre of the ellipse et
i . If one sets the number of each type of

ellipses nt and the placing domain of each ellipse A(et
i ), then define the coverage model.

The choice of values a(t), b(t), t = 1, . . . , q , the centre (from A(et
i )) and a tilt angle of

each ellipse et
i , i = 1, . . . , nt , t = 1, . . . , q , defines a concrete cover.

For example, the structure of the cover C3(7, 3) is the coverage model when the centres of
equal pairwise intersecting discs are located in the nodes of a triangular tile, and a curvilinear
triangle in the centre of the tile is covered by one disc with a lesser radius and by three equal
discs (Figure 1(a)). In this case, n1 = 3, n2 = 3, n3 = 1, A(e1

i ) – nodes of a tile, A(e3
1) –

centre of a tile, and A(e2
i ) – curvilinear triangles formed by discs of type 1 and 3.
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Optimization 1359

(a) (b)

Figure 1. (a) Cover C3(7, 3) with density D ≈ 1.0677; (b) Cover E3(6, 2) with density D ≈ 1.0786.

Problem formulation. In this paper, we consider the problem of the construction of regular
plane covers with a minimal density in the classes C OVk(p, q) when a tile is an equilateral
triangle (k = 3) or a square (k = 4) and one tile is covered by p ellipses of q (q = 1, 2, 3)

different types.
It is evident that some covers using ellipses can be constructed from the covers that use

discs by applying the affine transformation (AT). An AT is a transformation that preserves
straight lines and ratios of distances between points lying on a straight line while keeping
the coverage density the same. Examples of ATs include translation, expansion, reflection
and rotation. An AT is equivalent to a linear transformation followed by a translation.

In [10], Fejes Tóth proposed a plane cover using discs of two radii for which the density
tends to 1.0189, while the radii of small discs tend to zero. Although it is a strong theoretical
result, such a cover is useless for WSNs because of the very large number of discs that cover
one tile.

We proposed several new coverage models with a small number of ellipses, which are
used to cover one tile. Also, we constructed several new regular plane covers using ellipses
from covers that use discs by applying an AT. Some of these covers are optimal in their
classes, another ones have a minimal known densities and used to find upper bounds for
coverage density in the classes.

If the number of types of elements in a cover is fixed, then the usage of a square or
hexagon tile in the regular cover with discs usually leads to a density increase in comparison
with the covers that use triangular tiles.[5,6] However, if we use ellipses, then we will see
that it is possible to obtain the same density for the covers that use either triangle or square,
or hexagonal tiles.

The rest of the paper is organized as follows. We introduce new coverage models in
Section 2, and theoretical analysis of density of each coverage model is conducted. Section
3 introduces an approach to generate a set of different regular plane covers in different
classes by applying AT. Finally, we conclude our work in the last section.

2. New coverage models

In this section, we present three new coverage models by ellipses of two and three types.
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1360 A.I. Erzin and S.N. Astrakov

2.1. Coverage by ellipses of two types

Let us consider the next coverage model in the class C OV3(6, 2). In every cover in this
coverage model, the centres of equal pairwise intersecting discs are located in the nodes
of a triangular tile, and a curvilinear triangle in the centre of the tile is covered by three
equal ellipses with one common point (Figure 1(b)). The density of each cover depends
on the angle ϕ, and every cover indeed belongs to the one-parameter family of covers. We
suppose that the cover E3(6, 2) has minimal density in the family (the value ϕ ∈ [0, π/6]
is optimal).

Theorem 2.1 The minimal density of the covers in the class C OV3(6, 2) is upper bounded
by 1.0786.

Proof In order to proof the theorem, we will show that the density of the cover E3(6, 2) ∈
C OV3(6, 2) is at most 1.0786. Let R be the radius of the disc that has its centre in the node
of a regular triangular tile, 2d is the length of the side of the triangular tile, a is the length
of semi-major axis, and b is the length of the semi-minor axis of the ellipses that cover a
curvilinear triangle in the centre of a tile. The latter three ellipses have one point in common,
and the points of pairwise intersections of these ellipses lie on the sides of the curvilinear
triangle. Then,

x = R
√

3

2
; y = R

2
; d = R cos ϕ; a = R

2

(
cos ϕ√

3
− sin ϕ

)
.

From equation of the ellipse, which reads

(x − d)2

b2
+

(
y − d/

√
3 + a

)2

a2
= 1

it can be inferred that

b = R(cos ϕ/
√

3 − sin ϕ)(cos ϕ − √
3/2)√

(2 cos ϕ/
√

3 − 1)(1 − 2 sin ϕ)

, ϕ <
π

6
.

Then, the density of the cover can be calculated by the formula

D(R, a, b, d) = π

2
√

3
· R2 + 6ab

d2
.

Or, after substitution,

D(ϕ) = π

2
√

3 cos2 ϕ

[
1 + 31/4

(
1 − cos

(π

3
− 2ϕ

)) √
tan

( π

12
+ ϕ

2

)]
.

The numerically found minimum is D(ϕ) ≈ 1.0786 when ϕ ≈ 0.3055 ≈ π/10.2835. Since
the cover E3(6, 2) is in C OV3(6, 2), then the theorem is proved. �

2.2. Coverage by ellipses of three types

Let us consider a new coverage model (structure) in the class C OV3(7, 3). In any cover
with such a structure, each regular triangular tile is partially covered by equal discs with
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Optimization 1361

radius R and with their centres in the nodes of a tile; furthermore, a curvilinear triangle in
the centre of a tile is covered by one disc of radius r that has its centre in the centre of a tile
and by three equal ellipses that have a semi-major axis of length a and a semi-minor axis
of length b. Denote by E3(7, 3) the cover with given structure having minimal density.

Theorem 2.2 The minimal density of the covers in the class C OV3(7, 3) is upper bounded
by 1.056.

Proof It is sufficient to proof that the density of the cover E3(7, 3) ∈ C OV3(7, 3) is at
most 1.056. To find the density of the cover E3(7, 3), we set (for ease of operation) R = 1
and use the notations in Figure 2(a). Point (R cos(α + β), R sin(α + β)) belongs both to
the disc of radius r and to the ellipse. Then,

(cos α − cos(α + β))2 + (cos α/
√

3 − sin(α + β))2 = r2;
(cos α − cos(α + β))2

b2
+ (sin α + a − sin(α + β))2

a2
= 1.

Express the minor semi-axis as

b = a(cos α − cos(α + β))√
a2 − (sin α + a − sin(α + β))2

.

Minimizing the area of the feasible ellipses (ellipses passing through certain points and
ensuring a tile coverage)

a2√
a2 − (sin α + a − sin(α + β))2

→ min
a

,

we obtain

a = 2(sin(α + β) − sin α)/3, b = 2(cos α − cos(α + β))/
√

3.

Then, the density is

D(α, β) =
π

(√
3 + 2

√
3

(
(cos α − cos(α + β))2 +

(
cos α/

√
3 − sin(α + β)

)2
))

6 cos2 α

(a) (b)

Figure 2. (a) Cover E3(7, 3) with density D ≈ 1.056; (b) Cover E3(9, 3) with density D ≈ 1.0442.
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1362 A.I. Erzin and S.N. Astrakov

+ 4 (sin(α + β) − sin α) (cos α − cos(α + β))

3 cos2 α
.

One can find (numerically) that min D(α, β) ≈ 1.056 when α ≈ 0.247 ≈ π/12.72 and
β ≈ 0.163 ≈ π/19.27. �

If in the cover E3(7, 3) one substitutes the disc of radius r by three equal discs with common
point in the centre of a tile, then one gets a cover in the class C OV3(9, 3) (Figure 2(b)).

Theorem 2.3 The minimal density of the covers in the class C OV3(9, 3) is upper bounded
by 1.0442.

Proof In order to prove the theorem, one can find the optimal forms of discs and ellipses
in the coverage model shown in Figure 2(b). Let us denote the corresponding cover (having
minimal density in the coverage model) as E3(9, 3) ∈ C OV3(9, 3) and find its density.
Suppose that the size of a triangular tile equals 2. Denote by R the radius of the discs with
the centres in the nodes of a tile, and by r the radius of the three discs in the centre of a tile.
The both radii depend on the angle α and

R(α) = 1

cos α
, r(α) = 2√

3
− 1

cos α
.

Moreover,

|C D| = 1√
3
−r = 1

cos α
− 1√

3
, β = π

3
−2 arctan |C D| = π

3
−2 arctan

(
1

cos α
− 1√

3

)
.

There is a unique circumscribing ellipse (it is called Steiner ellipse) about triangle which
(ellipse) has the minimal area S = 4π S�/

√
27, where S� is the area of the triangle.[12]

Then, the ellipse circumscribing about the triangle with the vertices E , P and Q (Figure 2(b))
has the minimal area

S(α) = 4π√
27 cos α

(
1 − 1

cos α
cos

(
2 arctan

(
1

cos α
− 1√

3

)
− π

6

))

×
(

sin

(
2 arctan

(
1

cos α
− 1√

3

)
− π

6

)
− sin α

)

for every feasible alpha.
The coverage density is a ratio of twelfth area of the disc with radius R plus half area

of ellipse and plus half area of the disc with radius r to the area of triangle O AD. In this
case, the density depends on one variable – angle α and equals

D(α) = 2
√

3

(
π R2

12
+ πr2

2
+ S

2

)
.

Minimum density is D(α) ≈ 1.0442 when α ≈ 0.14. �

3. Covers constructed by applying an AT

3.1. Coverage by equal ellipses

In [9], it was proved that, in the optimal (min-density) plane coverage by equal discs, the
centres of three adjacent discs with one common point are the nodes of a regular triangle.
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Optimization 1363

The density of such covers, denoted as C3(3, 1) ∈ C OV3(3, 1), does not depend on the
radius and equals 2π/

√
27 ≈ 1.2091. If a tile is a square, then the minimal density of the

cover with a square tile C4(4, 1) ∈ C OV4(4, 1) using equal discs is π/2 ≈ 1.5708.[5]
Applying an AT (a suitable vertical compression) to the cover C3(3, 1), we obtain an

isosceles right-angled triangle as a tile. Two such triangles with a common hypotenuse
form a square (E BC F in Figure 3(a)). Then, the minimal density of a regular cover with
ellipses E4(4, 1) ∈ C OV4(4, 1) using a square tile equals the density of a regular cover
C3(3, 1) ∈ C OV3(3, 1) using discs, for which a triangle tile is used; this density equals
2π/

√
27 ≈ 1.2091.

Moreover, one can find another cover with ellipses E4(2, 1) ∈ C OV4(2, 1) with the
same density, where a square AB DC is a tile (Figure 3(a)).

We conclude the subsection by

Proposition 3.1 Let C is a plane cover by equal discs. Then its density D(C) ≥
2π/

√
27, and the equality is achieved for the covers C3(3, 1) ∈ C OV3(3, 1), E4(2, 1) ∈

C OV4(2, 1), and E4(4, 1) ∈ C OV4(4, 1).

3.2. Coverage by ellipses of two types

In [5], we proposed a regular plane cover C3(4, 2) ∈ C OV3(4, 2) using discs of two radii
with density 11π/(18

√
3) ≈ 1.1084, and we showed the optimality of this cover for the

classes C OV3(4, q), q = 2, 3, 4. The cover C4(5, 2) ∈ C OV4(5, 2) was considered as
well, and its density is 3π/8 ≈ 1.1787.

Similarly, one can apply suitable ATs to the cover C3(4, 2) using discs [5] and obtain a
regular cover E4(6, 2) ∈ C OV4(6, 2) using ellipses with the same density 11π/(18

√
3) ≈

1.1084 (Figure 3(b)). A tile in this cover is a square BC DE in Figure 3(b). However, in
Figure 3(b), one can find another square tile AB FC , which is the determinant for the cover
E4(4, 2) ∈ C OV4(4, 2).

Let us apply an AT (vertical compression) to the cover E3(6, 2) (Figure 1(b)) to obtain
an isosceles right-angled triangle and a square tile, as we have done above. Then, a square
tile is covered by ten ellipses of four types. In this way, we leave a certain class of covers
(in this paper, we consider covers that use at most three types of ellipses). Nevertheless,
in the classes C OV4(6, 2) and C OV4(10, 2) there are the regular plane covers that use

(a) (b)

Figure 3. (a) Covers E4(4, 1) and E4(2, 1) with density 2π/
√

27 ≈ 1.2091; (b) Covers E4(6, 2)
and E4(4, 2) with density D ≈ 1.1084.
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1364 A.I. Erzin and S.N. Astrakov

ellipses of two types with a density D ≈ 1.0883. In order to prove this proposition, let us
consider a regular cover using discs, assuming that a = b in the cover E3(6, 2), that have a
minimal density in the coverage model that is approximately equal to 1.0883. After vertical
compression, it appears that a right-angled isosceles triangle is covered by six ellipses of two
types, and a square, which is generated by two such triangles with a common hypotenuse,
is the determinant for the cover in the class C OV4(10, 2). Moreover, one can find another
square tile, which is the determinant for the cover in the class C OV4(6, 2), with the same
density.

Remark 1 A square tile in the last cover in the class C OV4(6, 2) comprises two equal
right-angled isosceles triangles with a common hypotenuse, and each triangle is covered
by four ellipses of two types. If one apply the AT to obtain a regular triangular tile, then
a half of the tiles will be covered in one way and another half in a different way. But six
such tiles form a regular hexagon, and all hexagons are covered equally, and one gets a
regular cover in the class C OV6(14, 2) using hexagonal tiles with density D ≈ 1.0883
(Figure 4(a)).

Similarly, one can construct a cover in the class C OV6(5, 1) using triangles like ABC
in Figure 3(a), or a cover in the class C OV6(9, 2) using triangles like ABC in Figure 3(b).

3.3. Coverage by ellipses of three types

Let us consider a cover C3(7, 3) ∈ C OV3(7, 3) that uses discs (Figure 1(a)). The minimal
density of such a cover is not more than 1.0677. The application of an AT allows us to obtain
two regular covers in different classes, although they have the same density, namely, the
covers E4(8, 3) ∈ C OV4(8, 3) and E4(12, 3) ∈ C OV4(12, 3).

Proposition 3.2 The minimal density of the regular covers in the classes C OV4(8, 3)

and C OV4(12, 3) is upper bounded by 1.0677.

(a) (b)

Figure 4. (a) Cover E6(14, 2) with density D ≈ 1.0883; and (b) Cover C3(12, 4) with density
D ≈ 1.0547.
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Optimization 1365

4. Conclusions

The problem of min-density plane coverage by ellipses has not yet been studied sufficiently
well, what could be explained by the complexity of density minimisation problems. As
usual, these problems are nonlinear and multi-extremal.

Thus, the minimal density of regular plane coverage with equal ellipses is 2π/
√

27, and
we proposed several such covers in different classes.

If two types of ellipses are used in a regular cover, then the density depends both
on the class and the structure (coverage model) of the cover. Thus, for example, in class
C OV3(6, 2), we proposed a cover E3(6, 2) that has a density that is approximately equal
to 1.0786. The cover E3(6, 2) is optimal in C OV3(6, 2) among the covers with the same
structure. However, if we consider the whole class C OV3(6, 2), then the density of cover
E3(6, 2) is the least known of the densities in the class C OV3(6, 2).

Minimum density of the proposed regular covers is approximately equal to 1.0442. This
is the least-known density in the class C OV3(9, 3) and is minimal density of the covers that
have the same structure. But we cannot prove its minimality in the whole class. Nevertheless,
we believe that this paper contributes to the field by disseminating these novel results. In
any case, we found the upper bounds for the minimum densities of covers in the different
classes.

With an AT, we constructed several different nontrivial covers and estimated their
densities. It is very difficult to find some of the covers in a different way.

The covers that have more than three types of ellipses are not considered in this paper
because in this case, the density reduction is insignificant (for example, the minimal density
of the cover C3(12, 4) by discs with four different radii in Figure 4(b) not less than 1.0547)
but the optimisation problems become rather complex. Note that, in the majority of the
considered cases, it was impossible to solve the corresponding optimisation problems
analytically, and the minimal density was estimated numerically.
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