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Routing is a very important step in VLSI physical design. A set of nets are routed under
delay and resource constraints in multi-net global routing. In this paper a delay-driven
congestion-aware global routing algorithm is developed, which is a heuristic based method
to solve a multi-objective NP-hard optimization problem. The proposed delay-driven
Steiner tree construction method is of Oðn2 log nÞ complexity, where n is the number of
terminal points and it provides n-approximation solution of the critical time minimization
problem for a certain class of grid graphs. The existing timing-driven method (Hu and
Sapatnekar, 2002) has a complexity Oðn4Þ and is implemented on nets with small number
of sinks. Next we propose a FPTAS Gradient algorithm for minimizing the total overflow.
This is a concurrent approach considering all the nets simultaneously contrary to the
existing approaches of sequential rip-up and reroute. The algorithms are implemented
on ISPD98 derived benchmarks and the drastic reduction of overflow is observed.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

The Global Routing Problem (GRP) in VLSI design is a problem of routing a set of nets (multi-net global routing) subject to
limited resources and delay constraints. There are various recent approaches for solving GRP [2,5,20,15,18,23] available, but
the referred methods are not timing-driven. Most of these modern routers generate Steiner trees with highly optimized
wirelength and then use rip-up and reroute iteratively for reducing the congestion. But merely optimizing the wirelength
and then minimizing the overflow will not produce a feasible routing because they will not necessarily meet timing at
the sinks. A simple example is shown in Fig. 1 to demonstrate that optimum wirelength does not necessarily mean optimum
delay and vice versa.

The computation of delay is heavily dependent on pendant subtrees. Therefore, optimizing delay and congestion is a
multi-objective constraint, which is the focus of this work. In the example, Fig. 1(a) shows that, given 3 pins, 1(source),
2(sink), and 3(sink), we first draw the Hanan grid by drawing horizontal and vertical lines through them. The intersecting
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points are the generated Steiner points. Fig. 1(b) shows the minimum wire-length(WL = 3 units) tree configuration and
Fig. 1(c) shows another tree configuration for the net, whose wirelength, WL = 4 units. Now, we compute the delay of the
sink nodes for both the trees. In the figure, all Ri ¼ R and all Ci ¼ C. Though the tree in Fig. 1(b) has minimum WL(3 units),
it has 3RC delay whereas tree in Fig. 1(c) has 4 units of WL but 2RC delays at the sinks as can be seen from the following
equations. For, Fig. 1(b),
Delay at node2; d12 ¼ R1 � C3 þ ðR1 þ R2Þ � C2 ’ 3RC;

Delay at node3; d13 ¼ R1 � C2 þ ðR1 þ R3Þ � C3 ’ 3RC;
and for, Fig. 1(c),
Delay at node2; d12 ¼ ðR1 þ R2Þ � C2 ’ 2RC;

Delay at node3; d13 ¼ ðR4 þ R3Þ � C3 ’ 2RC:
As suggested by Moffitt et al. [21], there is increasing demand of timing-driven routing algorithms and there are not many
works focused in this area. There are a few global routing algorithms [14,30,29] based on MVERT [13], which consider timing
but they are of complexity Oðn4Þ (n is the number of sinks), and implemented on nets with small number of sinks. Also GRP
was formulated as a multi-commodity flow Problem [12] as well. With each net a certain flow of unit size is associated. Each
edge has a flow capacity. With respect to the objective function we may get a min-cost multi-commodity flow problem or
concurrent multi-commodity flow problem [27,3,1,10]. Meta-heuristics to solve GRP can be found in Timber-Wolf [8]
(simulated annealing), [4] (evolution algorithm), [9] (genetic algorithm) and [31] (tabu search). Fault tolerant routing
method for network-on-chip is described in [17].We propose an Oðn2 log nÞ method [26] for constructing delay-driven Stei-
ner trees. Another contribution of our work is a Gradient based approach for minimizing the overflow. The novelty of this
algorithm is that, it considers all the nets concurrently and provides a fully polynomial time approximation scheme(FPTAS).

In Section 2, the problem is formulated, and Section 3 describes our proposed algorithm MAD (Modified Algorithm of
Dijkstra) and its iterative modifications (IMAD). IMAD is applied to create minimum critical delay Steiner trees for each
net. History based IMAD described in Section 5 is used to create congestion-aware trees for each net. Also we have used
a router FLUTE [7] to generate another set of Steiner candidate trees for each net. Finally a gradient algorithm is used to pick
one tree for each net from its candidate set of trees, such that the total congestion/overflow is minimal. The Gradient method
is described in Section 4.

Since there are no recent timing-driven router available, we run MAD without Gradient on IBM/ISPD98 benchmarks and
this gives us the initial congestion of the chip. Then we run IMAD with Gradient and show how effectively it reduces the
congestion. The benchmarks are modified by assigning resistance, capacitance values to the wires. We show that 66.4% trees
Fig. 1. Minimum wirelength does not necessarily mean minimum delay and vice versa.
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picked by Gradient are generated by MAD and the rest are from FLUTE. The experimental results are shown in Section 7, and
Section 8 gives the conclusion. The appendix gives the theoretical analysis of MAD.

2. Problem formulation

The problem can be formulated as a two-criteria problem as follows. In the global graph, it is required to find a set of
Steiner trees, each of which connects a subset of vertices, such that the total congestion overflow, and the maximum timing
slack are minimal. The approximate solution to this problem is constructed in two stages. First we construct a set of timing-
driven Steiner trees for each net based on Elmore delay, and then select one tree for each net, taking into account the density
of connections. Density of connection is the number of wires passing through an edge. It is used as a measure of congestion.

At the first stage, given an undirected graph G ¼ ðV ; EÞ , jV j ¼ m. To each edge ði; jÞ 2 E two non-negative parameters rij

(resistance) and cij (capacitance) are assigned. Consider the subset of vertices Sv ¼ f0;1; . . . ;ng# V , where vertex 0 is the
source of the graph (since the graph is undirected, it has no source and we call vertex 0 the source of signal) and nodes
Sv n f0g are the sinks or terminals. We call nodes from V n Sv intermediate nodes. Each sink i 2 Sv has the capacitance ci

and vertex 0 has also the resistance r0.
Let us consider a Steiner tree T spanning Sv and rooted in 0. We are using the Elmore delay metric. Let k be an arbitrary

terminal in T and define Elmore delay as tkðTÞ. Let us denote:

� PkðTÞ - path from 0 to k in T. Also PuvðTÞ denotes path from u to v in T. Argument T is omitted where it is obvious from
context;
� Tj ðj 2 VðTÞÞ is downstream subtree of T with root j; Te ðe 2 EðTÞÞ is downstream subtree of T rooted in the head node of arc

e;
� CðHÞ ðRðHÞÞ - total capacitance (resistance) of subgraph H;CðHÞ ¼

P
e2EðHÞce þ

P
i2VðHÞci. Also we use notations:

Cj ¼ CðTjÞ;Ce ¼ CðTeÞ and Ruv ¼ RðPuvÞ.

The Elmore delay [22,25] along the arc ði; jÞ in T is defined as follows.
dij ¼ dijðTÞ ¼ rij
cij

2
þ Cj

� �
: ð1Þ
The delay of signal propagation from source 0 to terminal k (delay along the path PkðTÞ) is given by
tk ¼ tkðTÞ ¼ r0C0 þ
X

ði;jÞ2PkðTÞ
dij: ð2Þ
The maximum among all the delays to terminals in T is called the critical delay and is denoted by t�ðTÞ. Terminal
k : tkðTÞ ¼ t�ðTÞ is a critical terminal in tree T. In this paper, we discuss the sub problem of finding such a tree spanning S
in G that provides minimum critical delay:
max
i2S

tiðTÞ !min
T
: ð3Þ
This problem is known to be NP-hard [16]. The following section describes the proposed approximate algorithm, Modified
Algorithm of Dijkstra (MAD) for solving problem (3).

3. Algorithm MAD

Steps of the Algorithm:

Step 0. Set tree T ¼ ð0; ;Þ and delay t0 ¼ 0;
Step 1. Find ði; jÞ ¼ arg minðu;vÞ2E;

u2T;vRT
tuðT [ fu;vgÞ þ duvf g,

where
tuðT [ fu;vgÞ ¼ tuðTÞ þ r0ðcuv þ cv Þ þ

P
e2PuðTÞreðcuv þ cvÞ.

Set T ¼ T [ fi; jg and recalculate the delays tk ðk 2 TÞ:

� If j is an intermediate vertex, then set tj ¼ ti þ dij, and the delays tk in all the other vertices do not change;
� if j is a terminal, then cut off all the pendent subtrees not containing terminal vertices and recalculate all the delays in T by

formula (2).

If not all terminals are included in T then go to Step 1.
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3.1. Demonstration of MAD with an example:

Here we will show how MAD creates a rectilinear Steiner tree from a given set of points. In Fig. 2, the small circles 0, 1 and
2 are the given terminal points of a net, which are also called sinks. To generate Steiner points for rectilinear geometry,
vertical and horizontal lines are drawn through nodes 0, 1 and 2 resulting the grid structure in Fig. 2. The crosses at the inter-
section of the lines are the candidate Steiner points. Now, we start from root node 0 with an initial trivial (the set of edges is
empty) tree. We assume delay at t0 ¼ 0. To make the example brief and simple, we will not get into the details of the delay
calculation using the formulas. Instead we will assume the delay values at the nodes and generate the tree. Two edges (0, 3)
and (0, 5) are going out from root 0. Let us assume, t0ðT [ f0;3gÞ þ d03f g < t0ðT [ f0;5gÞ þ d05f g. Therefore edge (0, 3) is
selected by MAD. Since 3 is an intermediate (Steiner) vertex, just the delay at node 3 is updated as t3 ¼ t0 þ d03. Similarly
in the next two iterations, edges (0, 5) and (5, 6) are added to the tree and t5 and t6 are calculated. Next the minimum delay
edge picked up by MAD is (5, 1). But the node to be added is 1, which is a sink. Therefore, all the pendent subtrees not
containing terminal vertices are to be removed from the tree. The resulting tree in this iteration is shown in Fig. 3. And
now the delays of the nodes in the tree have changed because subtrees of some of the nodes have changed. Therefore,
t0; t5 and t1 are calculated using Eq. (2). Similarly edges (1, 7), (5, 6) and (7, 2) are added in the next three consecutive iter-
ations and the delays of the added nodes t7 and t6 are calculated. Now the last node added to the tree is sink 2. Therefore,
after cutting-off the redundant subtrees, the tree is as in Fig. 4. Since all the sinks are added to the tree, the iteration stops.

Time Complexity of Algorithm MAD: The generated set of Steiner points is reduced to OðcnÞ, where n is the number of
sinks/terminal points and c is a small factor. The reduction is based on a clustering technique adapted from [6]. The worst-
case time complexity of MAD is Oðn2 log nÞ. The number of iteration of Step 1 is upper bounded by n. And the complexity of
each Step 1 is Oðr log r þ gÞ based on Fibonacci-heap implementation, where r, the total number of nodes in the graph is OðcnÞ
and g, the number of edges is a linear function of n. Therefore, the worst-case complexity of MAD is Oðn2 log nÞ.

The algorithm admits the following iterative modifications.

Algorithm IMAD-1 at iteration kþ 1 constructs a Steiner tree with MAD using the values of delays from the tree built at
the previous iteration. At the 1st iteration, the previous tree is trivial.
Let Tk be the tree constructed by the algorithm at the k-th iteration and dk

ij be delay along the arc ði; jÞ 2 Tk. The algorithm
uses MAD to construct Tkþ1 and at each step of MAD the edge ðu;vÞ that minimizes the value: tuðTkþ1 [ fu; vgÞ þ dk

uv
(ðu;vÞ 2 E;u 2 Tkþ1;v R Tkþ1) is attached to the tree.
Algorithm IMAD-2 at iteration kþ 1 constructs a Steiner tree with MAD using the values of delays from all the trees built
at all the previous iterations. At the 1st iteration, the previous tree is trivial.
Let �dk

ij be the arithmetic mean of delays dl
ij along the arc ði; jÞ in trees Tl (l 6 k). The algorithm uses MAD to construct Tkþ1

and at each step of MAD the edge ðu;vÞ that minimizes the value: tuðTkþ1 [ fu;vgÞ þ �dk
uv (ðu;vÞ 2 E;u 2 Tkþ1;v R Tkþ1) is

attached to the tree.

The algorithms stop, when Tkþ1 ¼ Tl l 6 k, or maximum number of iterations is performed.

3.2. Preliminary lemmas

Here we introduce some denotations and preliminary lemmas which will be used later.

Remark 1. Let T be a Steiner tree spanning S;u 2 S be a leaf in T and P be the path connecting root 0 and u. T n P is a set of
subtrees fTð0Þ; . . . ; TðkÞg. Denote by v i the root of TðiÞ;v i 2 P. Vertices fv1; . . . ;vkg split P into kþ 1 parts:
P ¼ P1 [ P2 [ . . . [ Pkþ1, where P1 ¼ P0v1 ; Pkþ1 ¼ Pvku and Pi ¼ Pv i�1v i for i ¼ 1; . . . ; k (see Fig. 5). We will use these denotations
in following statements.
Fig. 2. Candidate Steiner points.



Fig. 3. Intermediate tree.

Fig. 4. Final Steiner tree generated by MAD.

Fig. 5. Remark 1.
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Fig. 6. Lemma 2.

Fig. 7. Lemma 3.
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Consider Steiner tree T. Let t̂u be the delay along the path Pu (disregarding subtrees) and �tuv be the delay in vertex v in
subtree Tu n Tv .
Lemma 1. Let T be a Steiner tree for S and u 2 S be a leaf in T. Then
tuðTÞ ¼ t̂u þ r0

Xk

i¼0

CðTðiÞÞ þ
Xk

i¼1

RðPiÞ
X
jPi

CðT ðjÞÞ;
where Pi and TðjÞ are defined as in Remark 1.
Proof. proof is omitted due to page limitation. Details can be obtained in [28]. h
Lemma 2. Given the path P connecting the source vertex 0 with a terminal u and v 2 P (see Fig. 6). Then
tuðPÞ ¼ t̂0v þ t̂vu þ R0vðCvu þ cuÞ:
Proof. proof is omitted due to page limitation. Details can be obtained in [28]. h
Lemma 3. Let T be a Steiner tree for S;u 2 S be a leaf in T and v 2 Pu (see Fig. 7). Then
tuðTÞ ¼ �t0v þ �tvu þ R0vCðTvÞ:
Proof. proof is omitted due to page limitation. Details can be obtained in [28]. h
4. Congestion aware tree selection

Algorithm IMAD constructs a set of timing-driven Steiner trees for each net in the global graph.
The algorithm is applied when the following inputs are provided. Logical network given as a set of nets and primary

inputs with AT(Arrival Time) s and primary outputs with RT (Required Time) s, Number of layers, Specific resistance and
capacitance and maximum number of channels Q ij (capacity of corresponding global edge) in each layer, and Resistances
and capacitances of vias.

The best trees generated by IMAD are stored as candidate tree set for that net. To increase the cardinality of the candidate
set, we use FLUTE [7] along with IMAD. FLUTE is a fast and accurate method for construction of rectilinear Steiner minimal
tree (RSMT). We create Steiner trees for each net applying L-routing on two pin nets decomposed from multi-pin nets
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(decomposition done by FLUTE). We check the delay of the FLUTE generated trees. If the tree generated from FLUTE is
new(i.e. if it was not already generated by IMAD) and has comparable delay with IMAD generated trees, then it is added
to the candidate tree set of that net. We have measured comparable delay of FLUTE as 95% to 105% of delay of trees generated
by IMAD. Therefore, we have several feasible Steiner trees of various types in the candidate set for each net. A gradient based
method is described below which is used to pick one tree for each net from its candidate set Qs, so that the total overflow of
the edges is minimum. Consider the problem of optimal use of routing resources, i.e. the available routing tracks. We use
index e 2 E for edge of global graph G, and index t for trees, where
t 2 J ¼
[S
s¼1

Qs;

Set aet ¼
1; if edge e 2 the tree t

0; otherwise

(
and

xt ¼
1; if tree t is selected

0; otherwise:

(

Then the problem is defined as follows:
f ðxÞ ¼
X
e2E

max 0;
X
t2J

aetxt � qe

( ) !2

! min
xt2½0;1�

; ð4Þ

X
t2Qs

xt ¼ 1; s ¼ 1; . . . ; S: ð5Þ
Objective (4) is the sum of penalties for capacity overflows of routing resources qe; e 2 E. If there is no overflow, then the
penalty (4) is zero. Linear relaxation of (4) and (5) is considered. The function f ðxÞ is convex and smooth, therefore the
gradient algorithm, described below can be applied.

For the reason of simplicity we rearrange the objective function:
~f ðyÞ ¼
X
e2E

max 0; ye � qef gð Þ2;
where ye ¼
P

t2Jaetxt; e 2 E.
We use the following notations below: let e > 0 be desired precision of solution and L be a lower bound of objective func-

tion of problem (4) and (5).
Algorithm GradAl.

Step 0. Initialization.
� ~xt :¼ 1
jQs j ðt 2 Q s; s ¼ 1; . . . ; SÞ;

� ~ye :¼
P

t2Jaet~xt ðe 2 EÞ;
� L :¼ 0.
Step 1. Iteration. Calculate the values
� ge ¼maxf0; ~ye � qeg ðe 2 EÞ;
� ts ¼ arg mint2Qs

P
e2Egeaet

and set

� dt ¼
1� ~xt ; t ¼ ts;
�~xt ; t – ts;

�
for each t 2 Qs; s ¼ 1; . . . ; S;

� z ¼ ðzeÞ; ze ¼
P

t2Jaetdt ; e 2 E;

� GZ ¼
P

e2Egeze.

Recount the lower bound: L :¼maxfL;~f ð~yÞ þ 2GZg.
If ~f ð~yÞ � L 6 e maxf1; Lg, then STOP. Else GOTO Step 2.
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Step 2. Move to a new point.

Calculate ~p ¼min 1;� GZ
ZZ

� �
;GZ is defined above, ZZ ¼

P
e2EðzeÞ2, and set

� ~xt :¼ ~xt þ dt ~p, (t 2 J);

� ~ye :¼ ~ye þ ze~p; ðe 2 EÞ.

Then GOTO Step 1.

Claim 1. The algorithm provides ð1þ eÞ-approximation solution of the problem (4) and (5). Its time complexity is
OðjEjjJje�1 ln e�1Þ.
Proof. First demonstrate that the objective function decreases at each iteration. Since function ~f ðyÞ is convex, then
~f ðyÞP ~f ð~yÞ þ 5~f ð~yÞðy� ~yÞ ¼ ~f ð~yÞ þ
X
e2E

2geðye � ~yeÞ;
where y is arbitrary feasible point. Estimate the last expression by solving the problem
X
e2E

geye ¼
X
e2E

ge

X
t2J

aetxt ¼
X
t2J

X
e2E

geaet

 !
xt !min

x
;

The problem above decomposes into the independent subproblems for each net s:
min
x

X
t2J

X
e2E

geaet

 !
xt ¼

XS

s¼1

min
t2Qs

X
e2E

geaet

 !
¼
XS

s¼1

X
e2E

geaets ;
the last equality follows from the definition of ts. Thus,
X
e2E

geðye � ~yeÞP
XS

s¼1

X
e2E

geaets �
X
e2E

ge~ye ¼
X
e2E

ge

XS

s¼1

aets �
X
t2J

aetxt

 !
¼
X
e2E

ge

XS

s¼1

aets 1� xtsð Þ �
X

t2J; t–ts

aetxt

 !

¼
X
e2E

ge

X
t2J

aetdt ¼ GZ:
Therefore,
~f ðyÞP ~f ð~yÞ þ 2GZ;
L ¼ ~f ð~yÞ þ 2GZ is a lower bound for ~f ðyÞ, and if ~f ð~yÞ � L 6 e maxf1; Lg, then ~y defines a ð1þ eÞ-approximation. Otherwise the
descent direction is defined by vectors d and z. h

The descent direction d is from current point ~x to the integer point x ¼ ðxtÞ, where xt ¼ 1 if t 2 ft1; . . . ; tsg, and xt ¼ 0,
otherwise. In order to find a stride parameter p 2 ½0;1�, we can find minimum of function
hðpÞ ¼ f ð~yþ zpÞ ¼
X
e2E

max 0; ~ye � qe þ zepf gð Þ2;
but we will use simpler function
rðpÞ ¼
X
e2E

ðge þ zepÞ2:
It is easy to check that hð0Þ ¼ rð0Þ;h0ð0Þ ¼ r0ð0Þ;hðpÞ 6 rðpÞ for all p 2 ½0;1�, and function r reaches a minimum in
~p ¼min 1;� GZ

ZZ

� �
.

If the current point ~y is not optimal, then h0ð0Þ < 0; r0ð0Þ < 0 and ~p > 0. Inequality hð0Þ > hð~pÞ follows from the expression
hð0Þ ¼ rð0Þ > rð~pÞP hð~pÞ.

Therefore, moving into point ~x0t ¼ ~xt þ dt ~p ðt 2 JÞ and ~y0e ¼ ~ye þ ze~p ðe 2 EÞ does not increase the objective function.
Now we prove, that each iteration has time complexity OðjEjjJjÞ, and the total number of iterations is bounded by

Oðe�1 ln e�1Þ.
Let us first find a lower bound for q ¼ rð0Þ � rð~pÞ for one iteration. Set D ¼ �2GZ. From definition of rðpÞ and step (stride

parameter) ~p follows that if D P 2ZZ, then q P D=2, and if D 6 2ZZ, then q P D2

4ZZ . Finally
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q P min
D
2
;

D2

4ZZ

( )
¼ D

2
min 1;

D
2ZZ

� �
:

The same estimation takes place for argument d ¼ f ð~yÞ � f ð~yþ z~pÞ of objective function, since d P q.
Let us now estimate the upper bound for D ¼ f ð~yÞ � L. Define Q as the total number of iterations. Parameters of one iter-

ation we define by upper index l ¼ 0;1; . . . ;Q . Step 0 corresponds iteration l ¼ 0, then ~y0 is initial point, L0 ¼ 0 and

D0 ¼ f ð~y0Þ � L0 ¼ f ð~y0Þ. Define c as number which is greater than each f ð~ylÞ, Dl and ZZl; l ¼ 0;1; . . ., even if the process is infi-
nite. Such number exists since the feasible set of linear relaxation problem is compact.

From equalities f ð~ylÞ ¼ f ð~yl�1Þ � dl
; Ll ¼maxfLl�1; f ð~yl�1Þ � Dlg and Dl ¼ f ð~ylÞ � Ll follows that Dl ¼minfDl�1;Dlg � dl. Tak-

ing into account the above lower bound for dl, the definition of number c and inequality Dl P 0, we get
Dl
6minfDl�1;Dlg � ðD

lÞ
2

4c
6 max

vP0
minfDl�1;vg � v2

4c

� �
:

Maximum of the last expression reached when v ¼ Dl�1, then
Dl
6 Dl�1 � ðD

l�1Þ
2

4c
¼ 1� Dl�1

4c

 !
Dl�1:
Continuing this inequality using inequality Dl�1 > e, which is true at each iteration except the last one. As a result, we get
Dl
6 1� e

4c

� �
Dl�1

6 1� e
4c

� �l

D0
6 1� e

4c

� �l

c:
The number of iterations Q is bounded by TðeÞ, and 1� e
4c

� 	TðeÞc ¼ e and since lime!0
TðeÞ

e�1 ln e�1 ¼ 4c, the complexity do not
exceed Oðe�1 ln e�1Þ.
5. History based MAD

To reduce the overflow further a penalty based on congestion history is added to the original cost function. Optimizing
congestion and delay at the same time is a difficult task as minimizing delay can lead to higher congestion and vice versa.
Therefore, a trade-off between the delay and the overflow is done in the cost function so that the delay is not increased
beyond a certain range to mitigate the congestion. Penalty is added to the history based cost of all the overflowed edges.

The history based cost at ðiþ 1Þth iteration of an edge e is given as.

hiþ1
e ¼ hi

e þ c; if edge e has overflow
hi

e; otherwise

(
, where hi

e is the history based cost of edge e at ith iteration and c is a constant

which can be increased to give more weightage to congestion in the cost function. The actual cost of the edge e is now cal-
culated as ce ¼ ðbe þ heÞ:pe, where be represents the base cost of Step 1 of algorithm MAD of section 3, which is dedicated to
optimize delay. And pe represents the current congestion penalty. This approach is called Negotiated Congestion Routing
(NCR) [19]. pe can be obtained using the following equations. Let the density of an edge,

dðeÞ ¼ demandðcurrent number of wires passing through the edgeÞ
supplyðcapacityÞ . Then the congestion penalty term pe[24] for edge e is defined as,

pe ¼
expðbðde � 1ÞÞ; if de > 1
de; otherwise

�
, where value of b used is ln 5 in the experiments.
of MAD with and without Gradient on Examples Derived from IBM/ISPD98 benchmarks.

h
e

Grids # of
Nets

MAD w/o Gradient History based mad with gradient

Max ovfl Total ovfl Delay (ps) Run time (s) Max ovfl Total ovfl Delay (ps) Run time (s)

1dd 64 � 64 11507 16 2494 23209.31 12.4 6 288 23539.25 21.2
2dd 80 � 64 18429 17 2692 31201.34 18.9 4 59 31764.75 34.5
3dd 80 � 64 21621 12 660 37339.23 17.3 2 3 37643.41 36.5
4dd 96 � 64 26163 12 1574 54112.32 43.9 5 138 54289.78 83.5
6dd 128 � 64 33354 16 2975 62911.21 47.4 5 90 63412.81 104.3
7dd 192 � 64 44394 9 270 84201.69 134.2 0 0 84976.51 228.1
8dd 192 � 64 47944 22 3531 91381.24 113.7 4 43 91729.24 238.7
9dd 256 � 64 50393 10 1920 92817.23 189.1 4 77 93102.13 359.3
0dd 256 � 64 64227 16 2483 126672.23 189.4 5 32 127134.33 435.7



Table 2
% of FLUTE generated trees selected by Gradient.

Bench name % of FLUTE tree selected

ibm01dd 34.1
ibm02dd 37.8
ibm03dd 33.8
ibm04dd 38.3
ibm06dd 34.9
ibm07dd 27.2
ibm08dd 34.1
ibm09dd 31.7
ibm10dd 30.1
Average 33.6
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6. Diversity of the generated steiner trees

The performance of the Gradient algorithm depends on the diversity of the candidate Steiner tree set. The dissimilarity
between the trees will give a number of routing possibilities for each net. Using a combination of trees, the congestion can be
effectively reduced. To measure the diversity of the Steiner tree pool, we use the metric described in [11]. Diversity of the
pool,

D ¼
PN�1

i¼1

PN

j¼iþ1
Dij

NðN�1Þ
2

¼
PN�1

i¼1

PN

j¼iþ1
1�Sij

NðN�1Þ
2

¼
PN�1

i¼1

PN

j¼iþ1
1�

commðEi ;Ej Þ
maxðEi ;Ej Þ

NðN�1Þ
2

, where N is number of candidate Steiner trees in the pool,

Sij is similarity between two trees i and j,
Dij is ð1� SijÞ, which is dissimilarity between two trees i and j,
commðEi; EjÞ is percentage of common edges shared by tree i and j, and
maxðEi; EjÞ represents maximum number of edges in either tree.

7. Experimental results

Algorithm IMAD, history based MAD and FLUTE generate a set of perspective trees for each net. For the experiment, the
maximum number of candidate trees used in the pool is 7. The average diversity of the trees is 32%. A tree is chosen for each
net using the gradient algorithm such that minimal residual capacity of global edges is maximal.

All algorithms are implemented in C on a quad-core AMD Opteron machine on Linux. We note that no benchmark suites
are available for delay driven routing. Existing methods [30,29,14] consider examples too small (maximum number of nets
1294) to be meaningful for modern VLSI physical design practices. Also, being a multi-objective NP-hard problem, our delay
driven routing with practical running times reduces overflow similar to the existing algorithms and unlike congestion aware
only routing algorithms. We run MAD without Gradient and IMAD with Gradient on a set of examples derived from mod-
ifying the IBM/ISPD 98 benchmark suite by assigning resistance(0.016 specific resistance) and capacitance(0.47 specific
capacitance) values to the wires. The modified examples are renamed with suffix ‘‘dd’’ to the benchmark designs.

The results are shown in Table 1. From Table 1, it can be seen how Gradient reduces the overflow efficiently. In Table 2, we
show the percentage of FLUTE generated trees selected by the gradient algorithm. Average 33:6% selected trees are gener-
ated by FLUTE, i.e 66:4% selected trees are from MAD, which establishes the importance of MAD as a timing-driven router.

8. Conclusion

In this paper, we proposed a provably tight timing-driven Steiner tree construction algorithm. Also we proposed a gra-
dient based method for minimizing the overflow. We have implemented our algorithm on modified benchmarks derived
from large industry-standard benchmarks called ibm/ISPD 98 benchmarks. None of the available timing-driven global rout-
ing algorithms work on such large number of nets. The current algorithm has limitation on getting zero-overflow solutions.
In future research, we are working on further reduction of the overflow while maintaining the timing at the sinks.

Appendix A. Theoretical Analysis of MAD

In this section, we investigate the performance of MAD applied to grid graphs. We call G a M � N grid graph if the set of
vertices VðGÞ ¼ fðm;nÞj 0 6 m 6 M;0 6 n 6 Ng for some M and N and EðGÞ ¼ fðv1;v2Þjv1 ¼ ðm;nÞ;
v2 ¼ ðm;nþ 1Þorv2 ¼ ðmþ 1;nÞg. Weighted grid graph G belongs to class C1 if resistances and capacitances of all the edges
of one line (horizontal or vertical) are equal, i.e. given edges e1 ¼ ððm1;n1Þ; ðm1;n1 þ 1ÞÞ and e2 ¼ ððm1;n2Þ; ðm1;n2 þ 1ÞÞ, then
re1 ¼ re2 and ce1 ¼ ce2 . The same property holds for horizontal edges.

Weighted grid graph G belongs to class C2, if G 2 C1 and additionally for each e 2 EðGÞ; ce ¼ k � re holds for some k. In this
section, we will show that, (a) If G 2 C1 is a m� n grid graph with single terminal vertex u, then MAD gives the minimum
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delay path connecting the source vertex 0 and terminal u and (b) If G 2 C2 and contains n terminal vertices, then MAD pro-
vides n-approximation solution of problem (3).

A.1. Grid graphs with a single terminal

Here we assume graph G belongs to class C1 and contains the only terminal vertex u : S ¼ f0; ug. We scrutinize the per-
formance of MAD on such kind of graphs and demonstrate the optimality of the path obtained.

First we show that, given two edges of a line (horizontal or vertical), the nearest to the root 0 is added to the tree first.

Claim 2. Given a graph G 2 C1 with single terminal vertex u. Let T be a partially constructed tree and vertices
u1ðx1; yÞ;u2ðx2; yÞ 2 T and v1ðx1; yþ 1Þ;v2ðx2; yþ 1Þ R T ðx1 < x2Þ. Then
tv1ðT [ fðu1;v1ÞgÞ þ dðu1;v1Þ < tv2ðT [ fðu2;v2ÞgÞ þ dðu2;v2Þ:
Similar inequality holds for horizontal edges.
Proof. We omit this technical proof for the reason of space. h
Claim 3. Let G 2 C1 be a m� n grid graph with single terminal vertex u and T be a partially constructed tree. If vertex
vðx; yÞ 2 T then all the vertices wði; jÞ 2 T ði 6 x; j 6 yÞ.
Proof. proof is omitted due to page limitation. Details can be obtained in [28] h
Theorem 1. Let G 2 C1 be a m� n grid graph with single terminal vertex u and P be the path constructed by MAD. Then
tuðPÞ ¼min
P0u

tuðP0uÞ:
Proof. proof is omitted due to page limitation. Details can be obtained in [28]. h
A.2. Grid graphs with n P 2 terminals

In this section, we consider operation of MAD on grid graphs with n terminal vertices and estimate its approximation ratio
in a special case.

Claim 4. Given graph G containing n terminal vertices. Assume MAD connects terminals in the following order:
fu1;u2; . . . ;uk; . . . ;ung and denote partially constructed tree spanning set fu1; . . . ;ukg by Tk. Then
t�ðTkÞ 6 t̂uk
þ t�ðTk�1Þ:
Proof. proof is omitted due to page limitation. Details can be obtained in [28]. h
Remark 2. Let S be the set of terminal vertices and T be a Steiner tree for S. Claim 4 yields the following estimation for crit-
ical delay in T:
t�ðTÞ 6
X
u2S

t̂u:
Theorem 2. Given G 2 C2 and S ¼ f0;1; . . . ;ng. Let TMAD be the tree constructed by MAD and Topt be an optimal tree spanning S.
Then
t�ðTMADÞ
t�ðToptÞ

6 n:
Proof. Use Remark 2. Let ui be the i-th terminal attached to TMAD and Toptðu1;u2; . . . ;uiÞ be an optimal tree spanning set
fu1;u2; . . . ;uig. As G belongs to class C2 delays along all the paths connecting 0 and ui are obviously equal. Also it is obvious
that t̂ui

6 t�ðToptðu1;u2; . . . ;uiÞÞ. Hence,



Fig. A.8. Graph G.

Fig. A.9. Tree T1.

Fig. A.10. Tree T2.
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t�ðTMADÞ 6
Xn

i¼1

t�ðToptðu1; u2; . . . ;uiÞÞ 6
Xn

i¼1

t�ðToptðu1; u2; . . . ;unÞÞ ¼ n � t�ðToptðu1;u2; . . . ;unÞÞ;
Therefore,
t�ðTMADÞ
t�ðToptÞ

6 n:
h

A.3. Tightness of the bound

In this section we demonstrate that the accuracy estimate of MAD obtained in the previous section is tight. Consider grid
graph G 2 C2 with n ¼ 2k terminals depicted in Fig. A.8 (similar example for graph with odd number of terminals can be eas-
ily constructed).

Let re ¼ ce for each e 2 EðGÞ, resistances of all the vertical and ‘‘short’’ horizontal edges equal e and resistances of all the
‘‘long’’ horizontal edges equal L. Capacities of all the terminals equal zero. We specify values r0; e and L later.

Consider two Steiner trees: T1 (Fig. A.9) and T2 (Fig. A.10).
It is easy to prove that critical delays in trees T1 and T2 satisfy the following relations:
t�ðT1Þ ¼ r0Lþ r0ðk2 þ 3k� 2Þeþ e2 4
3

k3 þ 2k2 � 3kþ 1
2


 �
þ eLðk2 þ 3k� 1Þ þ L2

2
ðA:1Þ

t�ðT2Þ ¼ 2kr0Lþ r0ð4k2 � k� 1Þeþ eLð4k� 3Þ þ e2 5k2 � 6kþ 3
2


 �
þ L2

2
ðA:2Þ
Choose d > 0 such that d n L� 1 and set e ¼ d
k2L
; r0 ¼ L2. In this case (A.1) and (A.2) imply:
t�ðT2Þ
t�ðT1Þ ¼ 2k� O

1
L


 �
< 2k; ðA:3Þ
and the ratio converges to 2k when L!1. One may easily see that tree T2 can be constructed by MAD. Also it is obvious that
t�ðToptÞ 6 t�ðT2Þ. So we have
t�ðTMADÞ
t�ðToptÞ

P 2k� O
1
L


 �
; ðA:4Þ
and the following Remark is true.

Remark 3. Given G 2 C2 containing n terminal vertices. Then MAD provides n-approximation solution of problem (3).
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