
Metadata of the chapter that will be visualized in
SpringerLink

Book Title Discrete Optimization and Operations Research
Series Title

Chapter Title Variable Neighborhood Search-Based Heuristics for Min-Power Symmetric Connectivity Problem in
Wireless Networks

Copyright Year 2016

Copyright HolderName Springer International Publishing Switzerland

Corresponding Author Family Name Plotnikov
Particle

Given Name Roman
Prefix

Suffix

Division

Organization Sobolev Institute of Mathematics

Address Novosibirsk, Russia

Email nomad87@ngs.ru

Author Family Name Erzin
Particle

Given Name Adil
Prefix

Suffix

Division

Organization Sobolev Institute of Mathematics

Address Novosibirsk, Russia

Division

Organization Novosibirsk State University

Address Novosibirsk, Russia

Email

Author Family Name Mladenovic
Particle

Given Name Nenad
Prefix

Suffix

Division

Organization University of Valenciennes and Hainaut-Cambresis

Address Famars, France

Email

Abstract We investigate the well-known NP-hard problem of finding an optimal communication subgraph in a given
edge-weighted graph. This problem appears in different distributed wireless communication networks, e.g.,
in wireless sensor networks, when it is necessary to minimize transmission energy consumption. We
propose new heuristic algorithms based on variable neighborhood search metaheuristic. Our results have



been compared with the best known results, and the numerical experiment showed that, on a large number
of instances, our algorithms outperform the previous ones, especially in a case of large dimensions.

Keywords
(separated by '-')

Wireless sensor networks - Energy efficiency - NP-hard problem - Variable neighborhood search



Variable Neighborhood Search-Based Heuristics
for Min-Power Symmetric Connectivity Problem

in Wireless Networks

Roman Plotnikov1(B), Adil Erzin1,2, and Nenad Mladenovic3

1 Sobolev Institute of Mathematics, Novosibirsk, Russia
nomad87@ngs.ru

2 Novosibirsk State University, Novosibirsk, Russia
3 University of Valenciennes and Hainaut-Cambresis, Famars, France

Abstract. We investigate the well-known NP-hard problem of finding
an optimal communication subgraph in a given edge-weighted graph.
This problem appears in different distributed wireless communication
networks, e.g., in wireless sensor networks, when it is necessary to mini-
mize transmission energy consumption. We propose new heuristic algo-
rithms based on variable neighborhood search metaheuristic. Our results
have been compared with the best known results, and the numerical
experiment showed that, on a large number of instances, our algorithms
outperform the previous ones, especially in a case of large dimensions.

Keywords: Wireless sensor networks · Energy efficiency · NP-hard
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1 Introduction

In recent years different issues related to the wireless communication networks
have been actively researched (see, e.g., [1,16]). Mainly, the problem is to mini-
mize energy consumption of network elements per time unit in order to prolong
the lifetime of the network. Since often the exact positions of the network ele-
ments and the topology of the network cannot be predefined, modern sensors
have ability to adjust their transmission ranges in order to minimize energy con-
sumption without breaking the connectivity of the network. Herewith, usually
the energy consumption of a network’s element is assumed to be proportional to
ds, where s ≥ 2 and d is the transmission range [15]. But in the general case this
condition may not be satisfied because of the inhomogeneity of the environment,
radio interference and peculiar properties of network elements (e.g., the signal
may not be spread equally in all directions). Thus, the communication energy
consumption for each connection could be arbitrary.

We assume that the communication network is represented as a connected
graph G = (V,E). In this paper we consider the symmetric case: an edge between
two vertices means that the both of them can send a message to each other
and the energy consumption for this communication is the same for both of
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2 R. Plotnikov et al.

them. If cij ≥ 0 is a transmission-related energy consumption needed for sending
data from i ∈ V to j ∈ V (as well as from j to i), then in the connected
subgraph T = (V,E′), E′ ⊆ E the energy consumption of node i ∈ V equals to
Ei(T ) = max

j:(i,j)∈E′
cij . The goal of this paper is the development of algorithms for

the construction of a spanning subgraph T that minimizes
∑

i∈V

Ei(T ). Without

loss of generality, we assume that subgraph T is a spanning tree.
In this paper we propose new heuristic algorithms which use the variable

neighborhood search (VNS) metaheuristic, different local searches and two vari-
ants of shaking algorithm. We compare solutions obtained by these algorithms
with optimal solutions in small dimension cases and with solutions obtained by
other algorithms when dimension is large.

The rest of the paper is organized as follows. Section 2 contains the for-
mulation of the problem. In Sect. 3 the related papers are described. The new
heuristics are proposed in Sect. 4. In Sect. 5 the results of numerical experiments
are presented. Section 6 concludes the paper.

2 Problem Statement

Mathematically, the considered problem can be formulated as follows. Given a
simple connected weighted graph G = (V,E) with a vertex set V , |V | = n, and
an edge set E, find such spanning tree T ∗ of G, which is the solution to the
following problem:

W (T ) =
∑

i∈V

max
j∈Vi(T )

cij → min
T

, (1)

where Vi(T ) is the set of vertices adjacent to the vertex i in the tree T and
cij ≥ 0 is the weight of the edge (i, j) ∈ E.

In literature, this problem is called the Minimum Power Symmetric Connec-
tivity Problem (MPSCP) [6]. Any feasible solution of (1), i.e., a spanning tree
of G, will be called a communication tree (subgraph). It is known that (1) is
strongly NP-hard [1,3,4,12], and if P �= NP, then the problem is inapproximable
within 1 + 1

260 [4]. Therefore, the construction and analysis of efficient approxi-
mation algorithms are some of the most important issues regarding the research
on this problem.

3 Related Works

The more general Range Assignment Problem, where the goal is to find a strong
connected subgraph in a given oriented graph, has been considered in [5,12]. Its
subproblem, MPSCP, was first studied in [6]. The authors proved that Minimum
Spanning Tree (MST) is 2-approximation for this problem. Also they proposed a
polynomial-time approximation scheme with performance ratio of 1 + ln 2 + ε ≈
1.69 and 15/8-approximate polynomial algorithm. In [7] a greedy heuristic, later
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VNS-Based Heuristics for MPSCP in Wireless Networks 3

called Incremental Power: Prim (IPP), was proposed. IPP is similar to the Prim’s
algorithm of finding of MST. A Kruscal-like heuristic, later called Incremental
Power: Kruscal, was studied in [8]. Both of these so called incremental power
heuristics have been proposed for the Minimum Power Asymmetric Broadcast
Problem, but they are suitable for MPSCP too. It is proved in [14] that they
both have an approximation ratio 2, and it was shown in the same paper that
in practice they yield significantly more accurate solution than MST.

Authors of [1] proposed two local search heuristics. The first one is edge-
switching (ES) which iteratively performs the best possible replacement of a tree
edge and a non-tree edge until a local optimum is reached. The other local search
algorithm is edge and fork switching (EFS), where at each step an attempt to
replace one or two edges of a tree by an edge or a fork (two adjacent edges) in the
best way. In [14] two ES-like heuristics were proposed. In the first one, ES1a, each
non-tree edge is added at first and then an edge which belongs to the appeared
cycle and causes the maximum power costs is removed. In the second heuristic,
ES1b, each edge from a tree is considered to be replaced by the non-tree edge
in such way that decrease of objective is maximum. It should be noticed that
instead of finding a local optimum ES1a and ES1b perform a single loop on a
fixed list of edges (i.e., once added or removed edges are never considered again).
Also, they propose a faster sweep method (SW) and the most time-consuming
double edge switching (ES2), which is said to be the generalization of EFS: it
performs replacements of two edges from a tree and two non-tree edges while
it leads to reduction of the objective. Their numerical experiments demonstrate
the weakest results of SW (4–5 % improvement over MST for 50–100 nodes),
better results of ES1a and ES1b (about 5.5 %), and incredibly high results of
ES2 (12–14 %). However, we, as well as authors of [17], could not achieve even
7 % improvement over MST for these dimensions on random instances using our
algorithms. It seems like the optimal solution, on average, does not outperform
MST by more than 7 % on our random instances. Anyway, ES2 is not applicable
for large dimensions because of the high time complexity (O(|V |3|E|2)). Also,
the another two local searches should be mentioned: ST from [17] and LI from
[3]. They are very similar because they use the same idea: at each step an edge
is removed from a tree and the root of obtained subtree is reconnected with
some vertex from another subtree in such way that the decrease of the objective
is maximum. The difference between ST and LI is the following: in ST the
best replacement is performed at each step, but in LI all edges are sequently
considered to be removed and replaced by another edge in the best way, and
this loop is repeated while the solution is improved at least at one its iteration.

In [13] a way to filter the edges without impairment of the optimal solution
was proposed. This method allows to significantly simplify the initial communi-
cation graph and to reduce the computation time. Authors of [17] presented a
new iterated local search (ILS) which uses ES and EFS at local search phase,
filtration technique from [13] and two different mutation operators. Their numer-
ical experiment results demonstrate that, on average, the best solution within
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4 R. Plotnikov et al.

acceptable time can be obtained by ILS with ES, filtration and so-called random
increase mutation.

In [2] a hybrid genetic algorithm (GA), which uses variable neighborhood
descent (VND) as mutation, was proposed. This algorithm is well parallelized
and very fast.

Since we don’t know any better heuristics proposed by other authors, we
have implemented the best variant of ILS, hybrid GA with VND and compared
our algorithms with them in Sect. 5.

4 Heuristics

As mentioned earlier, we use the VNS metaheuristic idea to get an approximate
solution of (1). We use two well-known schemas: basic VNS and general VNS.
Detailed descriptions of both these methods can be found in [9,10]. For the
reader’s convenience the pseudo codes of these algorithms are presented in Figs. 1
and 2. These metaheuristics consist of the local search and shaking phases. As
a stopping criteria of VNS-based algorithms we used the following rule: if there
were no any improvements in last 3 iterations then algorithm stops.

1: Select the set of neighborhood structures Nk, for k = 1, ..., kmax that will be used
for the shaking phase, and let N0 = {x}; find an initial solution x; set k = 0;

2: while the stopping criteria is not met do
3: while k ≤ kmax do
4: Perform Shaking : generate a point x′ at random from Nk(x);
5: Perform a Local search. Let x′′ be an obtained local optimum;
6: if x′′ is better than x then
7: x = x′′; k = 1
8: else
9: k = k + 1

10: end if
11: end while
12: end while

Fig. 1. Basic VNS

In order to reduce the computational complexity we use the filtration of edges
presented in [13]. The idea of this method is the following. If the lower bound of
the objectives of 1 on all communication trees, which contain the edge e, exceeds
the objective on another known feasible solution then the edge e is removed from
the communication graph. This filtration is applied to the communication graph
as soon as new record solution has been obtained. For the first approximation of
our heuristic we generate two trees: one by MST and another by IPP, and then
we take the better of them.
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VNS-Based Heuristics for MPSCP in Wireless Networks 5

1: Select the set of neighborhood structures Nk, for k = 1, ..., kmax that will be used
for the shaking phase, and let N0 = {x}; select the set of neighborhood structures
Nl, for l = 1, ..., lmax that will be used for local search; find an initial solution x;
set k = 0;

2: while the stopping criteria is not met do
3: while k ≤ kmax do
4: Perform Shaking : generate a point x′ at random from Nk(x);
5: while l ≤ lmax do
6: Find the best solution x′′ ∈ Nl(x

′).
7: if x′′ is better than x′ then
8: x′ = x′′; l = 1
9: else

10: l = l + 1
11: end if
12: end while
13: if x′ is better than x then
14: x = x′; k = 1
15: else
16: k = k + 1
17: end if
18: end while
19: end while

Fig. 2. General VNS

Local Searches. Each neighborhood structure of the local search phase of VNS-
based heuristics is used only for local search. Therefore, the descriptions of the
local search procedures are sufficient for the definition of the corresponding
neighborhood structures, and there is no necessity for explicit formulation of
the neighborhood structures.

We propose two local search heuristics which perform edge switchings, but,
as opposed to the known ES-like heuristics, they do not perform each edge
switching in the best way, but instead of this they iteratively consider a list of
edges and perform the best switching for each considered edge. The procedure
stops if at some iteration there was no any improvements in all steps of the loop
over the edges. There are two possible variants of this approach, we called them
Adding and Best Removing (ABR) and Removing and Best Adding (RBA). The
pseudo-codes of these local searches can be found, respectively, in Fig. 3 and in
Fig. 4. Note that these local searches are similar to ES1a and ES1b from [14],
but, as opposed to ES1a and ES1b, ABR and RBA guarantee that the obtained
solution is a local optimum.

Shaking. For the shaking procedure, which is used in basic VNS and general
VNS, we propose two algorithms. The first one is random shaking which is
described in Fig. 5. It consists of sequence of random edge addings and random
edge removings. The second algorithm is intensified shaking (Fig. 6), which adds
a random edge at first and then removes an edge from the cycle whose deletion
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6 R. Plotnikov et al.

1: Input: G = (V, E) - communication graph, T = (V, F ) — spanning tree;
2: improved = true;
3: while improved do
4: improved = false;
5: G = FilterEdges(G, W (T ));
6: D = E \ F ;
7: for each edge e ∈ D do
8: Find the such edge f in a cycle of F ∪ {e}, whose removing leads to the

maximum decrease of the objective;
9: T ′ = (V, F ∪ {e} \ {f});

10: if W (T ′) < W (T ) then
11: T = T ′;
12: improved = true;
13: end if
14: end for
15: end while

Fig. 3. ABR local search

1: Input: G = (V, E) - communication graph, T = (V, F ) — spanning tree;
2: G = FilterEdges(G, W (T ));
3: improved = true;
4: while improved do
5: improved = false;
6: for each edge e ∈ F do
7: Let A and B be the edges of connected components obtained after removing

of e from T ;
8: Find such edge f ∈ E which connects A and B and whose adding to A ∪ B

leads to the minimum increase of the objective;
9: T ′ = (V, A ∪ B ∪ {f});

10: if W (T ′) < W (T ) then
11: T = T ′;
12: G = FilterEdges(G, W (T ));
13: improved = true;
14: end if
15: end for
16: end while

Fig. 4. RBA local search

reduces the objective at most. In both algorithms replacing of edges is repeated
k times. Let kmax be the maximum number of edge replacements by the shaking
procedure. Note that kmax is a free parameter in the considered VNS heuristics,
and its best value of this parameter is estimated experimentally.
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VNS-Based Heuristics for MPSCP in Wireless Networks 7

1: Input: G = (V, E) - communication graph, T = (V, F ) – spanning tree, k – neigh-
borhood index;

2: i = 1;
3: while i ≤ k do
4: Select an edge e1 ∈ E \ F at random;
5: F ′ = F ∪ {e1};
6: Let C ⊆ F ′ be a cycle containing e1; select at random an edge e2 ∈ C;
7: F ′ = F ′ \ {e2};
8: T = (V, F ′);
9: end while

Fig. 5. Random shaking

1: Input: G = (V, E) - communication graph, T = (V, F ) — spanning tree, k —
neighborhood index;

2: i = 1;
3: while i ≤ k do
4: Select an edge e1 ∈ E \ F at random;
5: F ′ = F ∪ {e1};
6: Let C ⊆ F ′ be a cycle containing e1; select an edge e2 ∈ C whose deletion

reduces the objective at most;
7: F ′ = F ′ \ {e2};
8: T = (V, F ′);
9: end while

Fig. 6. Intensified shaking

5 Simulation

All the proposed algorithms have been implemented in C++ using the Visual
Studio 2010 Integrated Development Environment. A simulation was executed
for n = 10, 30, 50, 250, and in some cases for n = 500. For the same dimension,
100 different instances were randomly generated. For each instance, a required
number of points was uniformly scattered on a square area with a side of 10
units. After this, a complete edge-weighted graph whose vertices correspond to
the points and whose edge weights were equal to the squared distances between
the points was defined. Then the calculation of MST and IPP were run on the
complete graph, and the best of the obtained two trees was chosen as the first
approximation solution for the heuristics. The experiment was performed on an
Intel Core i5-4460 (3.2 GHz) 8 Gb machine, and only one thread was used at the
same time for all algorithms except CPLEX and GA.

In order to compare the algorithms for the large dimensions, when an optimal
solution cannot be found in acceptable time, we calculated the average improve-
ment compared to MST. This estimate was often used for these purposes in
the related papers [1,14,17]. For the small dimensions (n ≤ 30), we defined the
parameters of the problem formulation as an integer linear programming prob-
lem (ILP), as proposed in [3], and then we obtained the optimal solution using
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8 R. Plotnikov et al.

the IBM ILOG CPLEX package. In Table 1 the improvement of optimal solution
over MST and the average CPLEX CPU time are presented. Currently neither
of known packages and ILP formulations allow to obtain an optimal solution for
n ≥ 40 in acceptable time [1,3,13]. Note that we have parallelized CPLEX on 4
threads to speed-up calculations.

Table 1. CPLEX (optimal solution). Improvement over MST and CPU time

n Impr. to MST CPU time

10 3.98 % 0.33 s

30 5.78 % 93.53 s

For the VNS-based heuristics, it is necessary to define the parameter kmax.
For this goal, each algorithm was run on the same instances with different values
of kmax. It appeared that, beginning from kmax = 30, on average, the objective of
the obtained solution did not decrease significantly, whereas the runtime grown
fast. Moreover, on average, the runtime of all the algorithms remained accessible
for kmax = 30. Therefore, in all the VNS-based algorithms, we set kmax = 30.

In the Table 2 the effect of filtration from [13] is presented. The first column
represents the percentage of edges removed after applying the filtration proce-
dure to the complete graph when the results of MST and IPP are known. In
the other columns the speed-ups of some of the heuristics are reflected. One
can see that filtration significantly simplifies the initial graph and speeds up the
algorithms. In all further results all heuristics use filtration procedure.

Table 2. Filtration effect

n Filtered edges Speed-up of ES Speed-up of ABR Speed-up of RBA

30 53.02 % 53.08 % 58.96 % 46.15 %

50 55.81 % 59.62 % 63.36 % 53.74 %

100 59.71 % 66.38 % 64.3 % 59.57 %

250 60.84 % 70.59 % 66.53 % 62.73 %

In Table 3 the local search algorithms are compared. The best values are
marked bold. The best solutions were always obtained by EFS, but its running
time increases very fast with growing n, and it works more than 1000 s already
on 200 nodes.

Table 4 represents CPU time and improvement over MST of the basic VNS
with different local search procedures and random shaking. In Table 5 the results
obtained by the same algorithms but with intensified shaking are presented.
Since, on average, intensified shaking works slightly better that the random
shaking, in the further tables intensified shaking is used in VNS-based heuristics.
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VNS-Based Heuristics for MPSCP in Wireless Networks 9

Table 3. Local search heuristics. Improvement over MST and CPU time.

n ABR RBA EFS ES LI

Impr. to CPU Impr. CPU Impr. CPU Impr. CPU Impr. CPU

MST time to MST time to MST time to MST time to MST time

10 3.76 % 0.00 s 3.72 0.00 s 3.96% 0.00 s 3.75 % 0.00 s 3.04 % 0.00 s

30 5.03 % 0.00 s 5.05 % 0.00 s 5.58% 0.09 s 5.07 % 0.00 s 3.56 % 0.00 s

50 5.35 % 0.00 s 5.33 % 0.00 s 6.08% 0.92 s 5.45 % 0.00 s 3.98 % 0.00 s

100 5.52 % 0.02 s 5.5 % 0.02 s 6.17% 29.39 s 5.59 % 0.05 s 3.77 % 0.00 s

250 5.61 % 0.26 s 5.6 % 0.23 s – – 5.71 % 1.09 s 3.94 % 0.01 s

Table 4. Basic VNS with random shaking. Improvement over MST and CPU time.

n B ABR B RBA B ES B LI

Impr. to CPU Impr. to CPU Impr. to CPU Impr. to CPU

MST time MST time MST time MST time

10 3.98% 0.00 s 3.96 % 0.00 3.98% 0.01 s 3.93 % 0.00 s

30 5.74 % 0.06 s 5.78% 0.06 5.76 % 0.08 s 4.40 % 0.00 s

50 6.21 % 0.24 s 6.29 % 0.26 6.30% 0.32 s 3.96 % 0.00 s

100 6.08 % 1.39 s 6.23% 1.71 6.11 % 1.81 s 3.50 % 0.01 s

250 6.12 % 17.97 s 6.27% 22.52 6.00 % 19.27 s 3.62 % 0.02 s

Table 5. Basic VNS with intensified shaking. Improvement over MST and CPU time.

n B ABR B RBA B ES B LI

Impr. to CPU Impr. to CPU Impr. to CPU Impr. to CPU

MST time MST time MST time MST time

10 3.94 % 0.00 s 3.98% 0.00 s 3.98% 0.00 s 3.77 % 0.00 s

30 5.71 % 0.05 s 5.77% 0.05 s 5.76 % 0.06 s 4.14 % 0.00 s

50 6.16 % 0.23 s 6.26 % 0.21 s 6.27% 0.21 s 3.82 % 0.00 s

100 6.02 % 1.44 s 6.24% 1.44 s 6.12 % 1.21 s 3.42 % 0.01 s

250 6.01 % 15.41 s 6.27% 21.46 s 5.96 % 12.09 s 3.45 % 0.02 s

The general VNS-based heuristics results presented in Table 6. We have run
two variants of general VNS. Both of them used ABR and RBA as local searches
and intensified shaking. G AR is general VNS where in each iteration of the local
search phase ABR was run at first and RBA was run next. G RA is general VNS
in each iteration of the local search phase RBA was run at first and ABR was
run next.

In Table 7 the results obtained by ILS with different local searches are pre-
sented. The random increase mutation was used in ILS and, as well as it was
done in [17], 200 iterations were run before stop.
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10 R. Plotnikov et al.

Table 6. General VNS with intensified shaking. Improvement over MST and CPU
time.

n G AR G RA

Impr. to MST CPU time Impr. to MST CPU time

10 3.98 % 0.00 s 3.96 % 0.00 s

30 5.74 % 0.07 s 5.78% 0.08 s

50 6.15 % 0.28 s 6.29% 0.29 s

100 6.03 % 1.74 s 6.20% 1.86 s

250 6.05 % 21.27 s 6.30% 31.14 s

Table 7. ILS-based heuristics. Improvement over MST and CPU time.

n ILS ABR ILS RBA ILS ES ILS LI

Impr. to CPU Impr. to CPU Impr. to CPU Impr. to CPU

MST time MST time MST time MST time

10 3.98 % 0.02 s 3.9 % 0.02 s 3.98% 0.02 s 3.17 % 0.01 s

30 5.72 % 0.32 s 5.75 % 0.33 s 5.78% 0.43 s 2.929 % 0.02 s

50 6.23 % 1.111 s 6.28 % 1.23 s 6.33% 1.73 s 3.187 % 0.04 s

100 6.12 % 6.353 s 6.23 % 7.96 s 6.31% 13.33 s 3.048 % 0.09 s

250 6.06 % 65 s 6.16 % 107.5 s 6.4% 250 s 3.21 % 0.29 s

Although, on average, ILS outperforms the VNS-based heuristics, it requires
significantly more time, and the average excesses of the best of ILS-based heuris-
tic ILS ES over the best of VNS-based metaheuristics B RBA and G RA are not
so significant — they never exceed 0.1 %. Therefore, we compared the solution
obtained by one of the best VNS-based metaheuristics, basic VNS with RBA
and intensified shaking (B RBA), with the solution obtained by ILS ES in the
same running time as B RBA. These results are presented in Table 8. In the same
manner, we have compared the G RA (which appeared to be the best of general
VNS-based heuristics) with ILS ES, see Table 9. Except the improvement over
MST, for each of two heuristics B RBA and G RA, we calculated the percent-
age of cases when its solution is better than ILS and the percentage of cases
when it is worse than ILS ES. One can see that, on average, B RBA and G RA
both outperform ILS ES, especially on large dimensions. The advantages of the
both VNS-based heuristics are most strongly shown when n = 500. In this case
B RBA yielded more accurate solution than ILS ES in 99 % of cases, the aver-
age improvement of B RBA over MST exceeds the same estimation of LI ES by
0.44 % which is about 7.5 % of the improvement, and the maximum improvement
over to MST exceeds the same estimation of LI ES by 0.82 % which is 10.16 %
of the improvement. The results obtained by G RA in the case of n = 500 are
very impressive as well: G RA yields better solution than ILS ES in 94 % of
cases, its average excess of improvement over MST is 0.38 %, which is 6.37 %
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VNS-Based Heuristics for MPSCP in Wireless Networks 11

Table 8. Comparison of the results for the best of the basic VNS-based heuristics
B RBA and for the best of the iterated local search-based algorithms ILS ES.

n B RBA is better ILS ES is better B RBA: Impr. to MST ILS ES: Impr. to MST CPU time

Min Avg Max Min Avg Max

10 2% 0% 0% 3.98% 19.82% 0% 3.95% 19.82% 0.00 s

30 11% 2% 0.82% 5.78% 15% 0.82% 5.7% 14.58% 0.05 s

50 30% 10% 1.20% 6.28% 13.56% 1.20% 6.2% 13.41% 0.20 s

100 54% 26% 2.48% 6.23% 10.42% 2.38% 6.15% 10.86% 1.43 s

250 85% 15% 3.64% 6.29% 9.50% 3.46% 6.04% 9.36% 22.63 s

500 99% 1% 4.10% 6.34% 8.89% 3.72% 5.90% 8.07% 208.2 s

Table 9. Comparison of the results for the best of the general VNS-based heuristics
G RA and for the best of the iterated local search-based algorithms ILS ES.

n G RA is better ILS ES is better G RA: Impr. to MST ILS ES: Impr. to MST CPU time

Min Avg Max Min Avg Max

10 0% 0% 0% 3.98% 19.82% 0% 3.98% 19.82% 0.01 s

30 6% 6% 0.82% 5.77% 15% 0.82% 5.74% 14.58% 0.08 s

50 17% 14% 1.2% 6.29% 13.66% 1.2% 6.29% 13.56% 0.30 s

100 47% 36% 1.87% 6.21% 10.34% 2.42% 6.23% 10.86% 2.11 s

250 72% 28% 3.69% 6.29% 9.49% 3.65% 6.16% 9.60% 31.42 s

500 94% 6% 4.30% 6.35% 8.6% 3.75% 5.97% 8.29% 279.7 s

of the improvement. It should be noted, that LI ES had appeared to be too
time-consuming in a case of n = 500. Its average running time on 10 instances
exceeded 1200 s.

In [2] two hybrid genetic algorithms for the MPSCP were proposed. The
best results had been obtained by the genetic algorithm which used VND-based
heuristic as mutation. In Table 10 the results of this hybrid genetic algorithm
GA VND are compared with the best VNS-based heuristics: B RBA and G RA.
One can see that GA VND solved the problem significantly faster, but it should
be taken into account that it was well parallelized and used four parallel threads.
However, VNS-based heuristics yield more accurate solutions, especially on large

Table 10. Comparison of the results for the best of VNS-based heuristics and hybrid
genetic algorithm GA VND.

n B RBA G RA GA VND

Impr. to MST CPU time Impr. to MST CPU time Impr. to MST CPU time

10 3.98 % 0.00 s 3.98% 0.01 s 3.98% 0.06 s

30 5.78 % 0.05 s 5.77 % 0.08 s 5.75 % 0.14 s

50 6.28 % 0.20 s 6.29% 0.3 s 6.20 % 0.31 s

100 6.23% 1.427 s 6.21 % 2.11 s 5.96 % 1.12 s

250 6.29% 22.63 s 6.29% 31.42 s 5.87 % 6.35 s

500 6.34 % 208.2 s 6.35% 279.7 s 5.71 % 31.8 s
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instances: in a case of n = 500 their average improvement over MST exceeds the
same estimation for the GA VND by more than 0.6 %, which is 10.5 % of the
improvement. Since GA VND was stopped after stabilization (when the quality
of solutions was not changed during the last 20 iterations), we did not expect that
its solutions would become significantly better after the longer work. Therefore,
GA VND was not compared with the proposed VNS-based heuristics by time
limit, as it was done for ILS ES.

6 Conclusion

In this paper we have presented new variable neighborhood search-based heuris-
tics for the Minimum Power Symmetric Connectivity Problem. We used two
known variants of the VNS metaheuristic: basic VNS and general VNS. As local
search we used already known heuristics ES, EFS and LI as well as two new
heuristics: ABS and ARB. We also used filtration of edges of the communi-
cation graph inside our algorithms in order to reduce the computation time.
The numerical experiment has shown that the best of the proposed VNS-based
heuristics (namely, B RBA and G RA) are more suitable to use in practice than
the best of known algorithms (iterated local search-based algorithm proposed
in [17] and hybrid genetic algorithm proposed in [2]): on average, our heuristics
obtain significantly more accurate solutions in short time and allow to success-
fully get solutions very close to optimal in large dimension cases. In future we
plan to implement the variable neighborhood decomposition search [11] for this
problem in order to solve it in larger dimensions in acceptable time.
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