Discrete location problems ballred.gif (861 bytes) Benchmark library  line.jpg (1129 bytes)
Competitive facility
location problem

 ballred.gif (861 bytes)  Main page (Rus | Eng)

 ballred.gif (861 bytes) Competitive facility location problem

Test instances. Class A

For this class of instances the set of candidate sites and the set of clients are equal to the set of vertices of some random graph. Instances are generated as follows: m numbered points are randomly thrown on the unit square. Coordinates of each point are realizations of the uniformly distributed in the [0,1] random variable.The probability of two points to be connected with edge is decreasing as like as  exp(d 2), where d is euclidean distance between the points. The length of the new edge is equal to d. The distance between connected components are assumed to be inifinite.
For each pair of vertices i, j the value rij is assumed to be equal to the number of vertices, which are closer (in the sence of graph distances) to vertex j than vertex i or which are located at the same distance from j and their number is smaller than i. For given j values rij are pairwise different integer numbers from 0 to  m 1.
fi  = 40;
gi  = random integer from 25 to 35;
pij = bj, if rij  < Rj  and 0 otherwise, where bj  = random integer from 10 to 20, Rj = random integer from 1 to m.
Input data format:
each string contains only one value;
parameters are given in the following order:
m, n, (rij) line by line[1], pij line by line, fi , gi.
[1] for example, elements of 2x2-matrix A will be ordered as follows: a11, a12, a21, a22.
Instances' codes have the following meaning: a20-01 instance from class A, m = n = 20, unique number 01.

 

Instance code

UB

VL*

x*

a20-01

97

62

12 16 17 18

a20-02

112

53

2 6 8 11

a20-03

87

61

2 5 9 11 14 19

a20-04

144

35

2 5 9 14 19

a20-05

93

58

2 6 12

a20-06

52

51

5 8 13 18

a20-07

65

10

4 19 20

a20-08

73

38

2 5 9 12 13

a20-09

50

16

4 17

a20-10

83

29

3 4 5 6 14 17

a20-11

84

42

8 10 17 20

a20-12

59

22

2 9 14 19

a20-13

75

25

14 15 16

a20-14

124

51

10 18 20

a20-15

97

40

3 15 16 17

a20-16

74

27

1 13 20

a20-17

81

42

3 4 5 13 18

a20-18

96

50

9 10 12

a20-19

123

46

14 15 19

a20-20

74

32

10 11 15 16 20

All instances from a20

 

 

Instance code

UB

VL*

x*

a30-01

130

67

4 16 17 18 21

a30-02

110

44

1 4 21 24 25

a30-03

130

74

5 9 12 19 22 24 29 30

a30-04

101

67

2 3 4 8 12 15 20 23 30

a30-05

179

115

4 11 13 20 25

a30-06

146

41

3 9 20 29

a30-07

149

84

8 9 12 17 28

a30-08

144

56

7 8 12 13 15 18 23

a30-09

142

83

1 4 10 12 15 19 27 29

a30-10

165

67

4 7 9 16 28 30

a30-11

82

28

4 6 8 14 17

a30-12

147

43

8 15 18

a30-13

103

53

5 9 12 19 29

a30-14

190

55

14 17 20 27 30

a30-15

176

61

3 4 11 15 19 23 27

a30-16

159

93

2 5 10 14 17 22

a30-17

165

90

4 7 12 23 26

a30-18

151

82

2 6 9 11 16 19

a30-19

131

46

7 9 12 13 18

a30-20

152

98

3 7 17 19 23 24

All instances from a30

 

 

Instance code

UB

VLrecord

xrecord

a40-01

137

62

x*

a40-02

212

135

x*

a40-03

198

81

x*

a40-04

156

96

x*

a40-05

212

97

x*

a40-06

189

81

x*

a40-07

241

96

x*

a40-08

160

125

x*

a40-09

194

83

x*

a40-10

190

107

x*

a40-11

192

101

x*

a40-12

144

57

x*

a40-13

222

163

x*

a40-14

246

67

x*

a40-15

223

100

x*

a40-16

188

77

x*

a40-17

218

136

x*

a40-18

196

131

x*

a40-19

249

112

x*

a40-20

207

54

x*

All instances from a40

 

 

Instance code

UB

VLrecord

xrecord

a50-01

315

155

x*

a50-02

270

138

x*

a50-03

207

159

x*

a50-04

239

81

x*

a50-05

216

136

x*

a50-06

236

117

x*

a50-07

246

115

x*

a50-08

206

92

x*

a50-09

263

176

x*

a50-10

241

143

x*

a50-11

147

89

x*

a50-12

259

144

x*

a50-13

224

91

x*

a50-14

218

96

x*

a50-15

218

107

x*

a50-16

231

93

x*

a50-17

259

98

x*

a50-18

295

164

x*

a50-19

229

112

x*

a50-20

238

123

x*

All instances from a50