Простейшая
задача размещения
Тестовые
примеры
Головная страница
библиотеки
Простейшая задача размещения
Примеры на конечных проективных плоскостях
Примеры из данного класса сформированы с помощью матрицы инциденций для конечных проективных плоскостей. Для плоскости размерности k генерируется простейшая задача размещения с n = k2 + k + 1 предприятиями и m = n потребителями. Предприятие i может обслуживать потребителя j, если прямая i проходит через точку j. Стоимость открытия любого предприятия равна 3000. Матрица gij имеет k+1 незапрещенных (небесконечных) элементов из множества {0, 1, 2, 3, 4} в каждой строке и каждом столбце. Оптимальное решение содержит (k + 1) открытых предприятий, может быть найдено за полиномиальное время и соответствует пучку прямых, проходящих через некоторую точку плоскости. В таблицах приводятся тестовые примеры для k = 11, k = 17. Исходные данные в виде текстовых файлов доступны в первой колонке таблицы. Расположение локальных оптимумов для первого примера и k = 11 можно увидеть на диаграмме.
Размерность конечной проективной плоскости k = 11
Все примеры на конечных проективных плоскостях k = 11 fpp_11.zip 102 Kb
Код | Оптимум | Разрыв двойственности (%) | Оптимальное решение |
1 | 36230 |
7,50 |
9 25 38 40 68 74 75 78 86 95 100 119 |
2 | 36220 | 7,48 | 16 39 55 68 70 98 104 105 108 116 125 130 |
3 | 36233 | 7,49 | 13 15 43 49 50 53 61 70 75 94 117 133 |
4 | 36221 | 7,48 | 2 3 6 14 23 28 47 70 86 99 101 129 |
5 | 36226 | 7,49 | 3 26 42 55 57 85 91 92 95 103 112 117 |
6 | 36236 | 7,50 | 6 15 20 39 62 78 91 93 121 127 128 131 |
7 | 36211 | 7,46 | 4 9 28 51 67 80 82 110 116 117 120 128 |
8 | 36220 | 7,47 | 14 27 29 57 63 64 67 75 84 89 108 131 |
9 | 36225 | 7,49 | 4 5 8 16 25 30 49 72 88 101 103 131 |
10 | 36228 | 7,47 | 2 15 17 45 51 52 55 63 72 77 96 119 |
11 | 36219 | 7,49 | 2 10 19 24 43 66 82 95 97 125 131 132 |
12 | 36239 | 7,49 | 17 33 46 48 76 82 83 86 94 103 108 127 |
13 | 36226 | 7,50 | 12 25 27 55 61 62 65 73 82 87 106 129 |
14 | 36224 | 7,49 | 9 25 38 40 68 74 75 78 86 95 100 119 |
15 | 36236 | 7,51 | 4 10 11 14 22 31 36 55 78 94 107 109 |
16 | 36219 | 7,45 | 2 30 36 37 40 48 57 62 81 104 120 133 |
17 | 36234 | 7,50 | 1 7 8 11 19 28 33 52 75 91 104 106 |
18 | 36224 | 7,51 | 20 36 49 51 79 85 86 89 97 106 111 130 |
19 | 36234 | 7,49 | 2 4 32 38 39 42 50 59 64 83 106 122 |
20 | 36228 | 7,49 | 5 24 47 63 76 78 106 112 113 116 124 133 |
21 | 36221 | 7,47 | 9 25 38 40 68 74 75 78 86 95 100 119 |
22 | 36223 | 7,48 | 10 26 39 41 69 75 76 79 87 96 101 120 |
23 | 36223 | 7,45 | 6 19 21 49 55 56 59 67 76 81 100 123 |
24 | 36216 | 7,48 | 20 26 27 30 38 47 52 71 94 110 123 125 |
25 | 36216 | 7,48 | 17 33 46 48 76 82 83 86 94 103 108 127 |
26 | 36232 | 7,47 | 11 17 18 21 29 38 43 62 85 101 114 116 |
27 | 36222 | 7,48 | 15 31 44 46 74 80 81 84 92 101 106 125 |
28 | 36227 | 7,48 | 13 36 52 65 67 95 101 102 105 113 122 127 |
29 | 36213 | 7,79 | 10 33 49 62 64 92 98 99 102 110 119 124 |
30 | 36231 | 7,48 | 16 22 23 26 34 43 48 67 90 106 119 121 |
Размерность конечной проективной плоскости k = 17
Все примеры на конечных проективных плоскостях k = 17 fpp_17.zip 558 Kb
Код | Оптимум | Разрыв двойственности (%) | Оптимальное решение |
1 | 54548 | 5,08 | 29 45 49 58 109 111 130 135 158 170 176 203 206 213 214 228 245 302 |
2 | 54531 | 5,06 | 1 24 36 42 69 72 79 80 94 111 168 202 218 222 231 282 284 303 |
3 | 54554 | 5,06 | 7 12 35 47 53 80 83 90 91 105 122 179 213 229 233 242 293 295 |
4 | 54544 | 5,07 | 11 27 31 40 91 93 112 117 140 152 158 185 188 195 196 210 227 284 |
5 | 54541 | 5,07 | 24 27 34 35 49 66 123 157 173 177 186 237 239 258 263 286 298 304 |
6 | 54552 | 5,08 | 1 13 19 46 49 56 57 71 88 145 179 195 199 208 259 261 280 285 |
7 | 54526 | 5,06 | 7 24 81 115 131 135 144 195 197 216 221 244 256 262 289 292 299 300 |
8 | 54546 | 5,07 | 5 21 25 34 85 87 106 111 134 146 152 179 182 189 190 204 221 278 |
9 | 54541 | 5,08 | 15 17 36 41 64 76 82 109 112 119 120 134 151 208 242 258 262 271 |
10 | 54549 | 5,07 | 46 48 67 72 95 107 113 140 143 150 151 165 182 239 273 289 293 302 |
11 | 54528 | 5,05 | 33 67 83 87 96 147 149 168 173 196 208 214 241 244 251 252 266 283 |
12 | 54551 | 5,09 | 6 11 34 46 52 79 82 89 90 104 121 178 212 228 232 241 292 294 |
13 | 54548 | 5,08 | 4 27 39 45 72 75 82 83 97 114 171 205 221 225 234 285 287 306 |
14 | 54548 | 5,08 | 42 76 92 96 105 156 158 177 182 205 217 223 250 253 260 261 275 292 |
15 | 54555 | 5,09 | 5 10 33 45 51 78 81 88 89 103 120 177 211 227 231 240 291 293,, |
16 | 54549 | 5,08 | 51 85 101 105 114 165 167 186 191 214 226 232 259 262 269 270 284 301 |
17 | 54556 | 5,07 | 40 74 90 94 103 154 156 175 180 203 215 221 248 251 258 259 273 290 |
18 | 54540 | 5,06 | 9 14 37 49 55 82 85 92 93 107 124 181 215 231 235 244 295 297 |
19 | 54544 | 5,06 | 10 12 31 36 59 71 77 104 107 114 115 129 146 203 237 253 257 266 |
20 | 54538 | 5,08 | 14 71 105 121 125 134 185 187 206 211 234 246 252 279 282 289 290 304 |
21 | 54557 | 5,08 | 25 28 35 36 50 67 124 158 174 178 187 238 240 259 264 287 299 305 |
22 | 54551 | 5,07 | 4 9 32 44 50 77 80 87 88 102 119 176 210 226 230 239 290 292 |
23 | 54557 | 5,07 | 7 9 28 33 56 68 74 101 104 111 112 126 143 200 234 250 254 263 |
24 | 54531 | 5,06 | 9 13 22 73 75 94 99 122 134 140 167 170 177 178 192 209 266 300 |
25 | 54536 | 5,07 | 13 18 41 53 59 86 89 96 97 111 128 185 219 235 239 248 299 301 |
26 | 54552 | 5,08 | 28 44 48 57 108 110 129 134 157 169 175 202 205 212 213 227 244 301 |
27 | 54543 | 5,07 | 39 41 60 65 88 100 106 133 136 143 144 158 175 232 266 282 286 295 |
28 | 54552 | 5,10 | 32 34 53 58 81 93 99 126 129 136 137 151 168 225 259 275 279 288 |
29 | 54547 | 5,07 | 4 5 19 36 93 127 143 147 156 207 209 228 233 256 268 274 301 304 |
30 | 54541 | 5,08 | 36 70 86 90 99 150 152 171 176 199 211 217 244 247 254 255 269 286 |