В этом году Александру Алексеевичу Боровкову исполнилось 75 лет. Редкий повод выразить чувство признательности этому выдающемуся человеку и отдать дань восхищения его удивительной науке — стохастике.
Основная задача теории вероятностей и математической статистики — обнаружение закономерностей в условиях неопределенности. Эти отрасли знания основаны на всестороннем осмыслении стохастичности. Представления о случайности и необходимости, достоверности и возможности стали предметами глубоких математических исследований. Развитие математических методов исследования стохастических явлений существенно обогатило и радикально изменило как методологию и внутреннюю логику, так и всю технологию поиска и обнаружения закономерностей, обработки и осмысления опытных данных в точных и общественных науках. Среди бурно развивающихся разделов знания, немыслимых без широкого использования представлений современной стохастики, следует назвать молекулярную физику, квантовую механику, эконометрику и финансовую математику.
Человек обладает даром предвидения — способностью к мысленному эксперименту. Это качество проявляется у людей очень рано. Уже в детстве мы говорим «возможно», «вероятно», «скорее всего», «наверное». Мы часто действуем, не зная всех обстоятельств и без учета всех последствий, склонны оценивать свои и чужие шансы на успех, любим пари и бываем азартны. Жизнь и человеческая природа требуют от нас решений и действий в ситуациях, когда выбор труднопредсказуем и неоднозначен.
Теория вероятностей заняла особое место в человеческой культуре как наука о предвидении результатов и принятии решений в условиях неопределенности.
В качестве застывшего образа науку определяют как систему знаний и основанных на них представлений. С практической стороны наука — искусство поиска скрытых закономерностей. Теория вероятностей раскрывает тайны стохастики.
Нет сомнений, что наука основана на фактах и логике. Факты суть факты. Конечно, факты упрямы. Однако факты сами по себе бывают весьма разными. Нам доводится наблюдать как повторяемые, так и уникальные события. В жизни немало детерминированных процессов с предопределенными последствиями. Гораздо чаще мы сталкиваемся с явлениями стохастическими, ведущими к результатам из некоторого достаточно широкого спектра возможностей. Одно и то же происшествие может вызывать как вполне определенные, так и случайные события. Например, усекновение головы у монарха неизбежно влечет его гибель. Смерть здесь детерминирована. В то же время казнь суверена может стать источником совершенно различных и малопредсказуемых исторических событий. От факта до закономерности — дистанция огромного размера.
В современной физике под «событием» понимают точку четырехмерного пространства-времени. Ясно, что привычному смыслу слово «событие» в физике не отвечает. На обыденном уровне «событие» — это то, что может произойти, а может и не случиться. Для современной математики такой подход к «событию» малопродуктивен. Дело в том, что результат не полностью детерминированного процесса мы склонны воспринимать как множество близких исходов. Например, говоря о времени дожития пенсионера или о прилете в Москву днем, мы имеем в виду довольно широкие промежутки времени. Событие мы воспринимаем здесь не вполне индивидуально, а скорее как некоторое множество, лежащее в некотором социуме в каком-то смысле родственных множеств-событий. Со времен Дж. Буля при исследовании стохастических явлений под событиями принято понимать элементы довольно сложных математических объектов — булевых алгебр. Обычно используют так называемые алгебры измеримых множеств. Вероятность интепретируется как некоторая мера измеримых множеств. При рассмотрении простейших стохастических явлений с конечным числом равновозможных исходов (скажем, при исследовании бросания костей), можно обойтись частотным подходом к определению вероятностной меры. Вероятностью некоторого исхода можно считать отношение полного числа благоприятных (в смысле этого исхода) испытаний к общему числу мыслимых результатов. Такой частотный подход к исчислению вероятностей затруднен во многих содержательных задачах, связанных с процессами, зависящими от континуальных параметров. Это принципиальное затруднение преодолевается с помощью современной теории меры.
Заслуга построения теории вероятностей на основе теории меры принадлежит крупнейшему математику XX века, нашему соотечественнику академику Андрею Николаевичу Колмогорову (1903–1987). Развитию стохастических методов в Сибири мы обязаны академику Боровкову, прямому ученику Колмогорова.
Боровков — всемирно признанный учёный. Широко известны его достижения в области предельных теорем теории вероятностей, эргодичности и устойчивости случайных процессов, в теории массового обслуживания, в разработке асимптотических методов статистики и анализа многомерных цепей Маркова. Предельна ясна роль Боровкова в сибирской школе теории вероятностей и математической статистики. Боровков — создатель и лидер этой школы. Нельзя переоценить вклад Боровкова в математическое просвещение. Достаточно сказать, что его учебник математической статистики заменил в учебном процессе многих университетов классические книги Ван дер Вардена и Крамера.
Отличительными чертами Боровкова являются абсолютная принципиальность, твердость и непреклонность при принятии решений о содержании и уровне научных работ. Боровков подвергает строжайшей экспертизе работы своих учеников и сотрудников. Трудно оспорить это право, так как самые жесткие требования Боровков всегда предъявляет к самому себе.
Александр Алексеевич в год своего 75-летия таков, каков и всегда. Его окружают рукописи и ученики. Его раздражают глупость, юбилеи и суета. Он любит работать и работает. Пусть так и будет...
20 августа 2006 г.
English Page | Russian Page |