![]() |
Yu. Kochetov
* Benchmarks library |
Uncapacitated Facility Location Problem
Finite Projective Planes
Dimension 17The instances are based on the incidence matrices for the finite projective planes. If the plane has dimension k we generate UFLP instances for n=k2+k+1 facilities and m=n clients. The fixed costs ci equal 3000. The matrix gij has exactly n+1 noninfinity elements from the set {0,1,2,3,4} for each row i and column j. To get initial data at the txt-format click the number in column Code.
Code | The best found value | Duality Gap (%) | The best found solution |
1 | 54548.00 | 5.08 | 29 45 49 58 109 111 130 135 158 170 176 203 206 213 214 228 245 302 |
2 | 54531.00 | 5.06 | 1 24 36 42 69 72 79 80 94 111 168 202 218 222 231 282 284 303 |
3 | 54554.00 | 5.06 | 7 12 35 47 53 80 83 90 91 105 122 179 213 229 233 242 293 295 |
4 | 54544.00 | 5.07 | 11 27 31 40 91 93 112 117 140 152 158 185 188 195 196 210 227 284 |
5 | 54541.00 | 5.07 | 24 27 34 35 49 66 123 157 173 177 186 237 239 258 263 286 298 304 |
6 | 54552.00 | 5.08 | 1 13 19 46 49 56 57 71 88 145 179 195 199 208 259 261 280 285 |
7 | 54526.00 | 5.06 | 7 24 81 115 131 135 144 195 197 216 221 244 256 262 289 292 299 300 |
8 | 54546.00 | 5.07 | 5 21 25 34 85 87 106 111 134 146 152 179 182 189 190 204 221 278 |
9 | 54541.00 | 5.08 | 15 17 36 41 64 76 82 109 112 119 120 134 151 208 242 258 262 271 |
10 | 54549.00 | 5.07 | 46 48 67 72 95 107 113 140 143 150 151 165 182 239 273 289 293 302 |
11 | 54528.00 | 5.05 | 33 67 83 87 96 147 149 168 173 196 208 214 241 244 251 252 266 283 |
12 | 54551.00 | 5.09 | 6 11 34 46 52 79 82 89 90 104 121 178 212 228 232 241 292 294 |
13 | 54548.00 | 5.08 | 4 27 39 45 72 75 82 83 97 114 171 205 221 225 234 285 287 306 |
14 | 54548.00 | 5.08 | 42 76 92 96 105 156 158 177 182 205 217 223 250 253 260 261 275 292 |
15 | 54555.00 | 5.09 | 5 10 33 45 51 78 81 88 89 103 120 177 211 227 231 240 291 293.. |
16 | 54549.00 | 5.08 | 51 85 101 105 114 165 167 186 191 214 226 232 259 262 269 270 284 301 |
17 | 54556.00 | 5.07 | 40 74 90 94 103 154 156 175 180 203 215 221 248 251 258 259 273 290 |
18 | 54540.00 | 5.06 | 9 14 37 49 55 82 85 92 93 107 124 181 215 231 235 244 295 297 |
19 | 54544.00 | 5.06 | 10 12 31 36 59 71 77 104 107 114 115 129 146 203 237 253 257 266 |
20 | 54538.00 | 5.08 | 14 71 105 121 125 134 185 187 206 211 234 246 252 279 282 289 290 304 |
21 | 54557.00 | 5.08 | 25 28 35 36 50 67 124 158 174 178 187 238 240 259 264 287 299 305 |
22 | 54551.00 | 5.07 | 4 9 32 44 50 77 80 87 88 102 119 176 210 226 230 239 290 292 |
23 | 54557.00 | 5.07 | 7 9 28 33 56 68 74 101 104 111 112 126 143 200 234 250 254 263 |
24 | 54531.00 | 5.06 | 9 13 22 73 75 94 99 122 134 140 167 170 177 178 192 209 266 300 |
25 | 54536.00 | 5.07 | 13 18 41 53 59 86 89 96 97 111 128 185 219 235 239 248 299 301 |
26 | 54552.00 | 5.08 | 28 44 48 57 108 110 129 134 157 169 175 202 205 212 213 227 244 301 |
27 | 54543.00 | 5.07 | 39 41 60 65 88 100 106 133 136 143 144 158 175 232 266 282 286 295 |
28 | 54552.00 | 5.10 | 32 34 53 58 81 93 99 126 129 136 137 151 168 225 259 275 279 288 |
29 | 54547.00 | 5.07 | 4 5 19 36 93 127 143 147 156 207 209 228 233 256 268 274 301 304 |
30 | 54541.00 | 5.08 | 36 70 86 90 99 150 152 171 176 199 211 217 244 247 254 255 269 286 |