Simple
Plant Location Problem
Benchmarks
Home Simple Plant Location Problem Benchmarks
Instances with large duality gap
Instances with large duality gap are difficult for exact methods based on the linear relaxation. We present three classes Gap-A, Gap-B, Gap-C with large duality gap. The local search and branch-and-bound algorithms on the classes require considerable efforts.
The instances from Gap-A are easer than the instances from Gap-B, Gap-C. Their duality gap in average equals 26%. The instances have dimension n = m = 100. Opening cost of each facility is equal 3000. The transportation matrix gij has 10 non-forbidden (non-infinited) elements from the set {0, 1, 2, 3, 4} in each column j. In other words, each customer has 10 potential facilities choosen at random with uniform distribution from all facilities. The optimal solution has 12 or 13 opening facilities. Input data as text files are in the first column of the table. Allocation of local optima for the first instance one can see on the diagram.
Code |
The optimal value |
Duality Gap (%) |
The optimal solution |
332 | 36154 | 25.43 | 10 14 17 33 34 40 44 50 59 63 64 78 |
432 | 36155 | 24.71 | 12 21 35 44 47 57 58 61 65 75 80 91 |
532 | 36150 | 27.68 | 2 4 31 32 40 42 52 56 73 77 80 89 |
632 | 36162 | 24.40 | 10 13 38 52 63 64 67 75 82 85 87 93 |
732 | 33157 | 21.73 | 3 5 11 17 25 31 37 51 53 59 95 |
832 | 36136 | 26.22 | 13 19 21 22 32 34 40 56 60 62 87 98 |
932 | 36133 | 26.55 | 16 30 37 41 46 55 56 58 63 67 72 87 |
1032 | 36127 | 26.16 | 12 20 21 23 33 36 38 41 48 64 67 75 |
1132 | 36163 | 25.66 | 10 16 23 58 68 69 74 75 82 88 94 100 |
1232 | 39123 | 29.69 | 3 10 18 21 22 31 35 57 69 71 87 92 99 |
1332 | 36164 | 24.50 | 4 9 17 28 59 66 71 76 79 82 91 97 |
1432 | 36150 | 27.19 | 5 11 22 25 41 55 61 62 65 75 84 89 |
1532 | 36158 | 23.56 | 7 10 22 23 31 32 40 45 52 54 55 59 |
1632 | 36141 | 26.33 | 9 10 21 35 37 39 41 45 48 67 80 86 |
1732 | 36157 | 24.27 | 4 13 33 38 41 65 73 75 85 90 91 96 |
1832 | 36135 | 25.79 | 7 11 13 27 28 30 34 46 47 48 77 78 |
1932 | 36146 | 24.34 | 9 32 39 40 45 56 61 62 70 72 90 98 |
2032 | 36150 | 25.62 | 22 26 28 41 49 61 64 67 80 84 93 97 |
2132 | 36140 | 23.70 | 2 13 23 36 43 48 50 64 76 77 85 91 |
2232 | 36145 | 23.51 | 4 5 10 31 34 42 47 70 81 92 94 100 |
2332 | 36172 | 24.37 | 12 13 32 36 38 44 51 57 67 71 87 88 |
2432 | 36137 | 27.37 | 3 7 11 14 21 23 28 31 68 74 87 90 |
2532 | 36153 | 25.09 | 11 25 28 33 43 47 52 64 79 95 98 99 |
2632 | 36164 | 23.48 | 5 9 16 25 26 28 44 66 79 91 95 99 |
2732 | 39123 | 28.58 | 2 6 11 12 13 21 41 48 49 63 64 90 91 |
2832 | 36145 | 25.21 | 9 11 21 26 33 34 65 67 76 83 84 90 |
2932 | 36155 | 24.50 | 2 16 19 52 55 62 71 76 77 81 84 91 |
3032 | 36113 | 27.02 | 9 27 35 39 43 53 66 67 72 73 89 93 |
3132 | 39130 | 30.48 | 1 24 26 30 31 54 60 62 63 83 85 96 99 |
3232 | 36157 | 25.82 | 5 17 30 33 38 41 50 55 64 71 89 95 |
The instances from Gap-B are more difficult than the instances from Gap-A but easer than the instances from Gap-C. Their duality gap in average equals 21%. The instances have dimension n = m = 100. Opening cost of each facility is equal 3000. The transportation matrix gij has 10 non-forbidden (non-infinited) elements from the set {0, 1, 2, 3, 4} in each row i. In other words, each facility has 10 potential customers choosen at random with uniform distribution from all customers. The optimal solution has 14 or 15 opening facilities. Input data as text files are in the first column of the table. Allocation of local optima for the first instance one can see on the diagram.
Code |
The optimal value |
Duality Gap (%) |
The optimal solution |
331 | 45123 | 24.26 | 4 16 21 23 24 25 28 29 51 58 69 79 85 91 92 |
431 | 45132 | 22.52 | 20 22 32 37 49 55 60 62 69 74 80 84 87 88 92 |
531 | 45135 | 19.25 | 11 13 19 23 30 32 33 34 35 42 59 73 74 79 90 |
631 | 45140 | 19.22 | 1 7 17 20 24 33 77 80 83 84 85 92 95 99 100 |
731 | 45130 | 24.01 | 6 12 33 34 37 38 45 50 60 69 71 74 76 77 91 |
831 | 45138 | 22.86 | 4 17 25 27 46 47 54 56 63 82 84 89 91 95 100 |
931 | 42172 | 20.69 | 6 12 18 19 24 28 35 37 51 53 55 61 94 100 |
1031 | 42165 | 16.91 | 4 16 17 19 21 30 36 70 74 82 84 85 86 100 |
1131 | 42162 | 17.74 | 3 7 9 22 33 35 44 72 84 86 91 96 97 99 |
1231 | 45136 | 19.72 | 1 2 4 10 11 26 31 37 41 59 61 73 75 86 87 |
1331 | 42169 | 18.05 | 5 6 7 11 13 17 26 47 64 67 79 83 86 92 |
1431 | 42157 | 18.65 | 10 20 32 34 41 42 54 64 65 72 73 81 91 100 |
1531 | 42160 | 17.72 | 7 14 19 26 44 45 48 63 65 72 78 95 96 97 |
1631 | 45140 | 21.89 | 4 5 11 12 15 29 37 41 60 63 73 77 79 98 99 |
1731 | 42174 | 19.22 | 12 16 19 24 28 42 45 50 57 59 87 94 96 98 |
1831 | 45134 | 22.72 | 5 9 13 17 23 26 32 42 54 58 89 90 94 95 97 |
1931 | 45136 | 22.80 | 17 20 30 32 34 38 39 59 63 65 78 81 84 92 98 |
2031 | 45131 | 22.55 | 7 8 9 22 32 42 58 62 67 69 71 77 83 84 100 |
2131 | 45126 | 24.14 | 4 5 10 11 12 14 17 25 54 55 60 74 92 94 97 |
2231 | 42179 | 19.75 | 7 8 15 28 49 55 58 62 67 71 72 89 90 92 |
2331 | 45134 | 21.82 | 4 7 8 15 21 23 50 52 64 73 74 84 85 90 93 |
2431 | 45137 | 24.28 | 18 25 29 30 42 48 52 54 55 68 71 72 73 78 97 |
2531 | 45124 | 26.26 | 2 3 9 10 23 44 48 60 69 74 76 85 91 93 98 |
2631 | 45131 | 23.83 | 10 17 20 35 40 44 48 59 63 77 82 83 93 95 96 |
2731 | 42159 | 16.96 | 3 10 12 20 23 25 35 38 43 45 56 57 69 94 |
2831 | 42151 | 17.56 | 7 10 17 19 26 28 29 31 34 36 48 51 67 72 |
2931 | 45132 | 24.55 | 13 27 33 36 39 43 45 50 51 52 56 64 71 79 96 |
3031 | 45144 | 20.88 | 1 15 24 25 26 27 33 39 44 49 54 65 72 76 89 |
3131 | 42158 | 21.68 | 1 12 15 18 25 34 36 39 78 82 95 96 98 100 |
3231 | 45125 | 23.58 | 5 10 18 20 28 42 52 64 67 76 79 89 91 92 96 |
The instances from Gap-C are the most difficult. Their duality gap in average equals 28%. The instances have dimension n = m = 100. Opening cost of each facility is equal 3000. The transportation matrix gij has 10 non-forbidden (non-infinited) elements from the set {0, 1, 2, 3, 4} in each row i and each column j. In other words, each facility has 10 potential customers and each customer has 10 potential facilities. They are choosen at random with uniform distribution. The optimal solution has 14 opening facilities. Input data as text files are in the first column of the table. Allocation of local optima for the first instance one can see on the diagram.
Code | The optimal value |
Duality Gap (%) |
The optimal solution |
333 | 42147 | 28.39 | 7 18 24 26 28 29 34 50 53 57 66 75 80 92 |
433 | 42145 | 28.42 | 29 34 40 42 47 50 51 58 59 68 74 76 88 90 |
533 | 39177 | 22.99 | 9 30 33 35 40 54 60 68 71 72 84 91 92 |
633 | 42144 | 28.42 | 6 15 21 29 32 33 38 42 54 65 70 71 73 88 |
733 | 42137 | 28.42 | 3 33 36 38 42 49 54 55 56 65 76 91 94 96 |
833 | 42144 | 28.41 | 11 17 25 39 45 46 51 55 60 74 83 85 86 96 |
933 | 42130 | 28.39 | 5 12 20 22 25 33 47 57 67 80 84 93 97 98 |
1033 | 42138 | 28.41 | 1 7 8 12 14 17 28 32 44 49 52 63 74 100 |
1133 | 42147 | 28.41 | 3 13 14 18 23 28 34 37 38 59 72 83 89 91 |
1233 | 42142 | 28.41 | 1 3 9 14 25 45 48 52 72 73 82 88 90 94 |
1333 | 42140 | 28.41 | 1 2 4 23 26 42 49 55 66 70 71 86 91 97 |
1433 | 42152 | 28.42 | 17 22 25 39 49 53 55 65 69 72 74 79 80 83 |
1533 | 42133 | 28.40 | 2 5 19 22 33 35 38 51 52 65 66 67 73 91 |
1633 | 42141 | 28.42 | 23 24 35 37 42 51 52 71 82 88 90 96 97 100 |
1733 | 42134 | 28.41 | 8 32 44 52 53 55 57 65 71 79 82 89 95 99 |
1833 | 42139 | 28.42 | 5 8 12 18 31 34 41 51 54 57 74 76 83 90 |
1933 | 42137 | 28.41 | 6 13 16 22 28 58 64 65 69 76 77 87 91 92 |
2033 | 42140 | 28.40 | 5 11 24 27 28 33 57 61 68 73 75 84 94 98 |
2133 | 42138 | 28.38 | 3 10 12 15 26 28 52 57 81 91 95 97 98 100 |
42121 | 28.39 | 6 8 14 17 25 31 32 33 55 63 67 75 85 89 | |
2333 | 42133 | 28.40 | 7 8 13 21 22 25 27 42 61 69 80 88 92 95 |
2433 | 42139 | 28.41 | 3 12 21 29 38 62 67 74 75 77 78 85 88 90 |
2533 | 42131 | 28.41 | 5 8 11 27 32 45 56 62 66 68 69 71 82 85 |
2633 | 42132 | 28.40 | 9 10 24 27 28 39 51 55 66 67 69 71 95 99 |
2733 | 42139 | 28.39 | 2 4 19 31 32 35 38 39 40 50 57 71 91 92 |
2833 | 42137 | 28.42 | 18 21 31 42 50 54 56 57 58 59 62 73 81 99 |
2933 | 42124 | 28.40 | 5 6 13 23 24 31 45 53 56 57 59 61 70 85 |
3033 | 42137 | 28.42 | 17 18 20 35 41 58 64 65 68 75 79 90 92 96 |
3133 | 42141 | 28.42 | 9 22 39 45 66 70 73 75 77 84 85 90 91 97 |
3233 | 42129 | 28.42 | 3 6 22 25 33 60 62 68 72 80 84 86 93 95 |