Small ranks of central unit groups of integral group rings of alternating groups
R. Aleev
In [1,2], the conditions are determined for the ranks to be equal to 0 and 1.
Theorem.Let rn be a rank of central unit groups of integral group rings of alternating group of degree n. Then
1) for n⩽, we have
n
r_n
n
r_n
n
r_n
n
r_n
1
0
2
0
3
0
4
0
5
1
6
1
7
0
8
0
9
0
10
1
11
1
12
0
13
1
14
3
15
3
16
1
17
1
18
4
19
5
20
2
21
1
22
5
23
7
24
4
25
1
26
5
27
12
28
9
29
3
30
6
31
14
32
13
33
6
34
7
35
20
36
23
37
11
38
10
\ \ 2) for n\geqslant39, we have r_n\geqslant11.
References
R. A. Ferraz, Simple components and central units in group rings, J. Alg., 279, N1 (2004), 191–203.
R. Zh. Aleev, A. V. Kargapolov, V. V. Sokolov, The ranks of central unit groups of integral group rings of alternating groups, J. Math. Sci., 164, N2 (2010), 163–167.