Processing math: 5%
im_logo
 Home  Registration  Program  Participants  Arrival  Accommodation  Contacts  Extra

Small ranks of central unit groups of integral group rings of alternating groups

R. Aleev

In [1,2], the conditions are determined for the ranks to be equal to 0 and 1.

Theorem. Let rn be a rank of central unit groups of integral group rings of alternating group of degree n. Then

  1) for n, we have

nr_nnr_nnr_nnr_n
10203040
51617080
90101111120
131143153161
171184195202
211225237244
2512652712289
29330631143213
33634735203623
37113810

\ \ 2) for n\geqslant39, we have r_n\geqslant11.

References

  1. R. A. Ferraz, Simple components and central units in group rings, J. Alg., 279, N1 (2004), 191–203.
  2. R. Zh. Aleev, A. V. Kargapolov, V. V. Sokolov, The ranks of central unit groups of integral group rings of alternating groups, J. Math. Sci., 164, N2 (2010), 163–167.

See also the author's pdf version: pdf

©   2013   SIM SB RAS