EN|RU

Volume 15, No 4, 2008, P. 74-83

UDC 517.7, 519.1
N. N. Tokareva
Description of $k$-bent functions in four variables

Abstract:
A simple description for the class of 2-bent functions in four variables is given. This class consists of 384 quadratic functions with 12 distinct types of quadratic part. Thus, all $k$-bent functions with at most four variables are classified. 
Bibl. 11.

Keywords: $k$-bent-functions, $k$-Walsh–Hadamard transform.

Tokareva Natalia Nikolaevna 1,2
1. S. L. Sobolev Institute of Mathematics, SB RAS,
4 Acad. Koptyug Ave., 630090 Novosibirsk, Russia
2. Novosibirsk State University,
2 Pirogov St., 630090 Novosibirsk, Russia
e-mail: tokareva@math.nsc.ru

 © Sobolev Institute of Mathematics, 2015