Volume 15, No 5, 2008, P. 35-46
UDC 519.174
D. S. Krotov
On perfect colorings of the halved 24-cube
Abstract:
We consider perfect 2-colorings of the distance-2 graph of the 24-cube $\{0,1\}^{24}$ with parameters $((20+c,256-c)(c,276-c))$ (i.e., with the eigenvalue 20). We prove that such colorings exist for all c from 1 to 128 except 1, 2, 4, 5, 7, 10, 13 and do not exist for $c$ = 1, 2, 4, 5, 7.
Tabl. 2, bibl. 4.
Keywords: perfect coloring, equitable partition, halved $n$-cube.
Krotov Denis Stanislavovich 1
1. S. L. Sobolev Institute of Mathematics, SB RAS,
4 Acad. Koptyug Ave., 630090 Novosibirsk, Russia
e-mail: krotov@math.nsc.ru
|