Processing math: 100%
EN|RU

Volume 16, No 5, 2009, P. 52-68

UDC 621.391.15
I. Yu. Mogilnykh
On nonexistence of some perfect 2-colorings of Johnson graphs

Abstract:
A perfect coloring in m colors of a graph G with matrix A={aij}i,j=1,,m is a coloring of vertex set of G in the set of colors {1,,m} such that the number of vertices of color j adjacent to a fixed vertex of color i does not depend on choice of the last vertex and equals aij. In this paper we obtain a low bound on parameter aij, ij, of a perfect coloring of a Johnson graph in two colors. Also we show that some perfect colorings of Johnson graph in two colors do not exist.
Bibl. 13.

Keywords: perfect coloring, completely regular code, Johnson scheme.

Mogilnykh Ivan Yur'evich 1,2
1. S. L. Sobolev Institute of Mathematics, SB RAS,
4 Acad. Koptyug Ave., 630090 Novosibirsk, Russia
2. Novosibirsk State University,
2 Pirogov St., 630090 Novosibirsk, Russia
e-mail: ivmog84@gmail.com

 © Sobolev Institute of Mathematics, 2015