EN|RU

Volume 19, No 2, 2012, P. 85-92

UDC 519.95
A. M. Romanov 
On the admissible families of components of hamming codes

Abstract:
We describe the properties of the $i$-components of Hamming codes. We suggest constructions of the admissible families of components of Hamming codes. It is shown that every $q$-ary code of length $m$ and minimum distance 5 (for $q=3$ the minimum distance is 3) can be embedded in a $q$-ary 1-perfect code of length $n=(q^m-1)/(q-1)$. It is also demonstrated that every binary code of length $m+k$ and minimum distance $3k+3$ can be embedded in a binary 1-perfect code of length $n=2^m-1$.
Bibliogr. 5.

Keywords: Hamiltonian cycle, perfect matching, Boolean cube, Gray code.

Romanov Aleksandr Mikhailovich 1
1. S. L. Sobolev Institute of Mathematics, SB RAS,
4 Acad. Koptyug Ave., 630090 Novosibirsk, Russia
e-mail: rom@math.nsc.ru

 © Sobolev Institute of Mathematics, 2015