Processing math: 100%
EN|RU

Volume 20, No 3, 2013, P. 45-64

UDC 519.1
Sargsyan V. G.
On the maximum cardinality of a k-zero-free set in an Abelian group

Abstract:
A subset A of elements of an Abelian group G is called k-zero-free if x1++xk1 does not belong to A for any x1,,xk1A. A k-zero-free set A in the group G is called maximal if for any xGA the set A{x} is not k-zero-free. We study the maximum cardinality of a k-zero-free set in an Abelian group G. In particular, the maximum cardinality of a k-zero-free arithmetic progression in a cyclic group Zn is determined and upper and lower bounds on the maximum cardinality of a k-zero-free set in an Abelian group G are improved. We describe the structure of k-zero-free maximal sets A in the cyclic group Zn if gcd(n,k)=1 and k|A|n+1. Bibliogr. 8.

Keywords: k-zero-free set, group of residues, nontrivial subgroup, coset, arithmetic progression.

Sargsyan Vahe Gnelovich 1
1. Lomonosov Moscow State University,
Leninskie gory, 119991 Moscow, Russia
e-mail: vahe_sargsyan@ymail.com

 © Sobolev Institute of Mathematics, 2015