Volume 21, No 2, 2014, P. 52–58 
    UDC 519.7 
      N. A. Kolomeec  
      A threshold property of quadratic Boolean functions 
    
      Abstract: 
        Let f be a Boolean function in n variables and for any affine subspace L of dimension én/2ù  either f is affine on all shifts of L or f is not affine on any shift of L. It is proved that the algebraic degree of f can be more than 2 only if there is no affine subspace of dimension  én/2ù  that f is affine on.  
        Bibliogr. 8. 
       
    Keywords: Boolean function, quadratic Boolean function, bent function. 
    Kolomeec Nikolay Alexandrovich 1 
1. Sobolev Institute of Mathematics, SB RAS,  
4 Acad. Koptyug Ave., 630090 Novosibirsk, Russia 
e-mail:  nkolomeec@gmail.com  |