EN|RU | ![]() |
Volume 22, No 1, 2015, P. 86–99 UDC 519.178
Keywords: graph, automorphism, antipodality, oracle DOI: 10.17377/daio.2015.22.443 Ilnur M. Khuziev 1 Received 3 March 2014 References[1] V. Yu. Krasin, On the weak isometries of the Boolean cube, J. Appl. Ind. Math., 1, No. 4, 463–467, 2007.[2] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge Univ. Press, Cambridge, 2000. [3] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A. Spielman, Exponential algorithmic speedup by quantum walk, in Proc. 35th ACM Symp. Theory of Computing, San Diego, CA, USA, June 9–11, 2003, 59–68, ACM, New York, 2003. [4] J. Kempe, Discrete quantum walks hit exponentially faster, in S. Arora, K. Jansen, J. D. P. Rolim, and A. Sahai, eds., Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (Proc. 7th Int. Workshop on Randomization and Approximation Techniques in Comp. Sci., Princeton, NJ, USA, Aug. 24–26, 2003), 354–369, Springer-Verl., Berlin, 2003 (Lect. Notes Comput. Sci., Vol. 2764). [5] I. M. Khuziev, Quantum walk in symmetric Cayley graph over $\mathbb Z_2^n$ , 2013 (Cornell Univ. Libr. e-Print Archive, arXiv:1305.6849). |
|
![]() |
|
© Sobolev Institute of Mathematics, 2015 | |
![]() |
|