EN|RU

Volume 22, No 2, 2015, P. 73-85

UDC 519.1
V. G. Sargsyan
Counting sumsets and differences in Abelian groups

Abstract:
A subset $A$ of a group $G$ is called $(k,l)$-sumset, if $A=kB-lB$ for some $B\subseteq G$, where $kB-lB=\{x_1+\dots+x_k-x_{k+1}-\dots-x_{k+l}\mid x_1,\dots,x_{k+l}\in B\}$. Upper and lower bounds for the numbers of $(1,1)$-sumsets and $(2,0)$-sumsets in abelian groups are provided.
Bibliogr. 4.

Keywords: arithmetic progression, group, characteristic function, coset.

DOI: 10.17377/daio.2015.22.449

Vahe G. Sargsyan 1
1. Lomonosov Moscow State University,
1 Leninskie gory, 119991 Moscow, Russia
e-mail: vahe_sargsyan@ymail.com

Received 20 March 2014
Revised 9 September 2014

References

[1] A. A. Sapozhenko, Solution of the Cameron–Erdös problem for groups of prime order, Zh. Vychisl. Mat. Mat. Fiz., 49, No. 8, 1503–1509, 2009. Translated in Comput. Math. Math. Phys., 49, No. 8, 1435–1441, 2009.

[2] V. G. Sargsyan, The number of differences in groups of prime order, Diskretn. Mat., 25, No. 1, 152–158, 2013. Translated in Discrete Math. Appl., 23, No. 2, 195–201, 2013.

[3] B. Green and I. Z. Ruzsa, Counting sumsets and sum-free sets modulo a prime, Stud. Sci. Math. Hung., 41, No. 3, 285–293, 2004.

[4] B. Green and I. Z. Ruzsa, Sum-free sets in Abelian groups, Isr. J. Math., 147, 157–188, 2005.
 © Sobolev Institute of Mathematics, 2015