EN|RU
English version:
Journal of Applied and Industrial Mathematics, 2016, 10:1, 145-154

Volume 23, No 1, 2016, P. 97-112

UDC 519.865
A. B. Zinchenko
Polytopes of special classes of balanced games with transferable utility

Abstract:
The polytopes of (0,1)-normalized convex and 1-convex (dual simplex) n-person TU-games, as well as monotonic big boss games are considered. The problems of characterization of extreme points of polytopes of 1-convex games, symmetric convex games and big boss games, symmetric w.r.t. coalition of powerless agents, are solved. For other polytopes, the description of subsets of extreme points is given.
Tab. 2, bibliogr. 15.

Keywords: TU-game, balancedness, 1-convexity, convexity, big boss game.

DOI: 10.17377/daio.2016.23.487

Alexandra B. Zinchenko 1
1. Southern Federal University,
8a Milchakov Ave., 344090 Rostov-on Don, Russia
e-mail: zinch46@mail.ru

Received 22 April 2015
Revised 16 October 2015

References

[1] O. N. Bondareva, Some applications of linear programming methods to cooperative game theory, in A. A. Lyapunov, ed., Problemy kibernetiki (Problems of Cybernetics), Vol. 10, pp. 119–140, Fizmatgiz, Moscow, 1963.

[2] V. A. Vasil’ev, Extreme points of the Weber polytope, Diskretn. Anal. Issled. Oper., Ser. 1, 10, No. 2, 17–55, 2003.

[3] A. B. Zinchenko, Properties of a polytope of special set functions, Izv. VUZ., Sev.-Kavk. Reg., Ser. Estestv. Nauki, No. 1, 13–17, 2012.

[4] A. B. Zinchenko, Stability of cores of a cooperative game in characteristic function form, Izv. VUZ., Sev.-Kavk. Reg., Ser. Estestv. Nauki, No. 3, 14–18, 2014.

[5] A. B. Zinchenko, G. V. Mironenko, and P. A. Provotorova, A consensus value for games with coalition structure, Mat. Teor. Igr Prilozh., 2, No. 1, 93–106, 2010.

[6] T. S. H. Driessen, V. Fragnelli, I. V. Katsev, and A. B. Khmelnitskaya, A game theoretic approach to co-insurance situations, in L. A. Petrosyan and N. A. Zenkevich, eds., Contributions to Game Theory and Management, Vol. 3, pp. 49–66, St. Petersbg. State Univ., St. Petersburg, 2010.

[7] T. S. H. Driessen and S. H. Tijs, The τ-value, the nucleolus and the core for a subclass of games, Methods Oper. Res., 46, 395–406, 1983.

[8] S. Muto, M. Nakayama, J. Potters, and S. H. Tijs, On big boss games, Econ. Stud. Q., 39, No. 4, 303–321, 1988.

[9] J. Potters, R. Poos, S. H. Tijs, and S. Muto, Clan games, Games Econ. Behav., 1, No. 3, 275–293, 1989.

[10] L. S. Shapley, On balanced sets and cores, Nav. Res. Logist. Q., 14, No. 4, 453–460, 1967.

[11] L. S. Shapley, Cores of convex games, Int. J. Game Theory, 1, No. 1, 11–26, 1971.

[12] M. Voorneveld and S. Grahn, A minimal test for convex games and the Shapley value, Work. Pap. Ser., Dep. Econ., Upps. Univ. No. 2001:2, 1–8, 2001.

[13] A. B. Zinchenko, On polytope of (0-1)-normal big boss games: redundancy and extreme points, in L. A. Petrosyan and N. A. Zenkevich, eds., Contributions to Game Theory and Management, Vol. 5, pp. 386–397, Grad. Sch. Manag. SPbU, St. Petersburg, 2012.

[14] A. B. Zinchenko, A simple way to obtain the sufficient nonemptiness conditions for core of TU game, in L. A. Petrosyan and N. A. Zenkevich, eds., Contributions to Game Theory and Management, Vol. 6, pp. 447–457, Grad. Sch. Manag. SPbU, St. Petersburg, 2013.

[15] A. B. Zinchenko, Von Neumann–Morgenstern solutions for 1-convex games, Appl. Math. Sci., 9, No. 4, 161–169, 2015.

 © Sobolev Institute of Mathematics, 2015