EN|RU
English version: Journal of Applied and Industrial Mathematics, 2017, 11:4, 514-520 |
![]() |
Volume 24, No 4, 2017, P. 34–46 UDC 519.174
Keywords: incidentor coloring, (1, $l$)-coloring, prism. DOI: 10.17377/daio.2017.24.572 Mikhail O. Golovachev 2 Received 22 March 2017
References[1] V. G. Vizing, A bipartite interpretation of a directed multigraph in problems of the coloring of incidentors, Diskretn. Anal. Issled. Oper., Ser. 1, 9, No. 1, 27–41, 2002 [Russian].[2] V. G. Vizing, On linear factors of multigraphs, Diskretn. Anal. Issled. Oper., Ser. 1, 10, No. 4, 3–7, 2003 [Russian]. [3] V. G. Vizing, L. S. Mel’nikov, and A. V. Pyatkin, On the ($k, l$)-coloring of incidentors, Diskretn. Anal. Issled. Oper., Ser. 1, 7, No. 4, 29–37, 2000 [Russian]. [4] A. V. Pyatkin, Some optimization problems of scheduling the transmission of messages in a local communication network, Diskretn. Anal. Issled. Oper., 2, No. 4, 74–79, 1995 [Russian]. Translated in A. D. Korshunov, ed., Operations Research and Discrete Analysis, pp. 227–232, Kluwer Acad. Publ., Dordrecht, 1997 (Math. Appl., Vol. 391). [5] A. V. Pyatkin, Upper and lower bounds for the incidentor ($k, l$)-chromatic number, Diskretn. Anal. Issled. Oper., Ser. 1, 11, No. 1, 93–102, 2004 [Russian]. [6] A. V. Pyatkin, On (1, 1)-coloring of incidentors of multigraphs of degree 4, Diskretn. Anal. Issled. Oper., Ser. 1, 11, No. 3, 59–62, 2004 [Russian]. [7] R. Diestel, Graph Theory, Springer, Heidelberg, 2017 (Grad. Texts Math., Vol. 173). [8] L. S. Mel’nikov and V. G. Vizing, The edge chromatic number of a directed/mixed multigraph, J. Graph Theory, 31, No. 4, 267–273, 1999. [9] J. Petersen, The theory of regular graphs, Acta Math., 15, 193–220, 1891 [German]. [10] D. B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, 2001. |
|
![]() |
|
© Sobolev Institute of Mathematics, 2015 | |
![]() |
|