EN|RU
English version:
Journal of Applied and Industrial Mathematics, 2017, 11:4, 500-505

Volume 24, No 4, 2017, P. 47–59

UDC 519.8
A. V. Eremeev
On computational complexity of the electric power flow optimization problem in market environment

Abstract:
Under consideration is the electric power flow optimization problem for an electric power system which typically arises in calculation of electrical power auctions in the “day-ahead” and balancing markets. It was established that the problem of finding a feasible flow in the balancing market is NP-hard in the strong sense even in case of one generator. The problem of finding an optimal flow in the day-ahead market is proved to be NP-hard even with one generator and without controlled cuts.
Bibliogr. 10.

Keywords: computational complexity, electric power system, market.

DOI: 10.17377/daio.2017.24.573

Anton V. Eremeev 1,2
1. Sobolev Institute of Mathematics,
4 Koptyug Ave., 630090 Novosibirsk, Russia
2. Dostoevsky Omsk State University,
55A Mira Ave., 630077 Omsk, Russia
e-mail: eremeev@ofim.oscsbras.ru

Received 28 March 2017

References

[1] G. I. Atabekov, Teoreticheskie osnovy elektrotekhniki: Lineinye elektricheskie tsepi (Theoretical Foundations of Electrical Engineering: Linear Circuits), Lan’, St. Petersburg, 2009 [Russian].

[2] V. M. Gornshtein, D. S. Miroshnichenko, and A. V. Ponomarev, Metody optimizatsii rezhimov energosistem (Methods for Optimization of Power System States) Energiya, Moscow, 1981 [Russian].

[3] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, 1979. Translated under the title Vychislitel’nye mashiny i trudnoreshaemye zadachi, Mir, Moscow, 1982.

[4] M. R. Davidson, Yu. V. Dogadushkina, E. M. Kreines, N. M. Novikova, Yu. A. Udal’tsov, and L. V. Shiryaeva, Mathematical model of the competitive wholesale power market in Russia, Izv. Ross. Akad. Nauk, Teor. Sist. Upravl., No. 3, 72–83, 2004 [Russian]. Translated in J. Comput. Syst. Sci. Int., 43, No. 3, 394–405, 2004.

[5] M. R. Davidson, Yu. V. Dogadushkina, E. M. Kreines, N. M. Novikova, A. V. Seleznev, Yu. A. Udal’tsov, and L. V. Shiryaeva, Mathematical model of power system management in conditions of a competitive wholesale electric power (capacity) market in Russia, Izv. Ross. Akad. Nauk, Teor. Sist. Upravl., No. 2, 84–94, 2009. Translated in J. Comput. Syst. Sci. Int., 48, No. 2, 243–253, 2009.

[6] M. C. Caramanis, R. E. Bohn, and F. C. Schweppe, Optimal spot pricing: Practice and theory, IEEE Trans. Power Appar. Syst., 101, No. 9, 3234–3245, 1982.

[7] W. W. Hogan, Contract networks for electric power transmission, J. Regul. Econ., 4, No. 3, 211–242, 1992.

[8] R. Palma-Benhke, A. Philpott, A. Jofré, and M. Cortés-Carmona, Modelling network constrained economic dispatch problems, Optim. Eng., 14, No. 3, 417–430, 2013.

[9] M. River, I. J. Pérez-Arriaga, and G. Luengo, JUANAC: A model for computation of spot prices in interconnected power systems, in Proc. 10th Power Syst. Comput. Conf., Graz, Austria, Aug. 19–24, 1990, pp. 254–261, Butterworths, London, 1990.

[10] F. C. Schweppe, M. C. Caramanis, R. D. Tabors, and R. E. Bohn, Spot Pricing in Electricity, Kluwer Acad. Publ., Norwell, MA, 1988.
 © Sobolev Institute of Mathematics, 2015