EN|RU
English version: Journal of Applied and Industrial Mathematics, 2018, 12:3, 417-425 |
![]() |
Volume 25, No 3, 2018, P. 5-22 UDC 519.8
Keywords: bilevel programming, complementarity slackness, optimality criteria. DOI: 10.17377/daio.2018.25.612 Vladimir L. Beresnev 1,2 Received 19 March 2018 References[1] I. A. Davydov, A. A. Melnikov, and P. A. Kononova, Local search for load balancing problems for servers with large dimension, Avtom. Telemekh., No. 3, 34–50, 2017 [Russian]. Translated in Autom. Remote Control, 78, No. 3, 412–424, 2017.[2] D. Aksen and N. Aras, A bilevel fixed charge location model for facilities under imminent attack, Comput. Oper. Res., 39, No. 1, 1364–1381, 2012. [3] D. Aksen, N. Piyade, and N. Aras, The budget constrained $r$-interdiction median problem with capacity expansion, Cent. Eur. J. Oper. Res., 18, No. 3, 269–291, 2010. [4] B. An, F. Ordóñez, M. Tambe, E. Shieh, R. Yang, C. Baldwin, J. DiRenzo, K. Moretti, B. Maule, and G. Meyer, A deployed quantal response-based patrol planning system for the U. S. Coast Guard, Interfaces, 43, No. 5, 400–420, 2013. [5] J. S. Angelo and H. J. C. Barbosa, A study on the use of heuristics to solve a bilevel programming problem, Int. Trans. Oper. Res., 22, 861–882, 2015. [6] V. Beresnev and A. Melnikov, Facility location in unfair competition, in Discrete Optimization and Operations Research (Proc. 9th Int. Conf. DOOR, Vladivostok, Russia, Sept. 19–23, 2016), pp. 325–335, Springer, Cham, 2016 (Lect. Notes Comput. Sci., Vol. 9869). [7] L. Brotcorne, S. Hanafi, and R. Mansi, One-level reformulation of the bilevel Knapsack problem using dynamic programming, Discrete Optim., 10, No. 1, 1–10, 2013. [8] F. M. Delle Fave, F. M. Jiang, Z. Yin, C. Zhang, M. Tambe, S. Kraus, and J. P. Sullivan, Game-theoretic security patrolling with dynamic execution uncertainty and a case study on a real transit system, J. Artif. Intell. Res., 50, 321–367, 2014. [9] S. Dempe, Foundations of Bilevel Programming, Kluwer Acad. Publ., Dordrecht, 2002. [10] M. Jain, J. Tsai, J. Pita, C. Kiekintveld, S. Rathi, M. Tambe, and F. Ordóñez, Software assistants for randomized patrol planning for the LAX airport police and the federal air marshal service, Interfaces, 40, No. 4, 267–290, 2010. [11] A. X. Jiang, Z. Yin, C. Zhang, M. Tambe, and S. Kraus, Game-theoretic randomization for security patrolling with dynamic execution uncertainty, in Proc. 12th Int. Conf. Auton. Agents Multiagent Syst., Saint Paul, MN, USA, May 6–10, 2013, pp. 207–214, Int. Found. Auton. Agents Multiagent Syst., Richland, SC, 2013. [12] S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer Implementations, John Wiley & Sons, New York, USA, 1990. [13] M. T. Melo, S. Nickel, and F. Saldanha-Da-Gama, A tabu search heuristic for redesigning a multi-echelon supply chain network over a planning horizon, Int. J. Prod. Econ., 136, No. 1, 218–230, 2012. [14] M. P. Scaparra and R. L. Church, A bilevel mixed-integer program for critical infrastructure protection planning, Comput. Oper. Res., 35, 1905–1923, 2008. [15] H. von Stackelberg, The Theory of the Market Economy, Oxf. Univ. Press, Oxford, 1952. [16] Y. Zhu, Z. Zheng, X. Zhang, and K. Y. Cai, The $r$-interdiction median problem with probabilistic protection and its solution algorithm, Comput. Oper. Res., 40, 451–462, 2013. |
|
![]() |
|
© Sobolev Institute of Mathematics, 2015 | |
![]() |
|