EN|RU
English version:
Journal of Applied and Industrial Mathematics, 2018, 12:4, 694–705

Volume 25, No 4, 2018, P. 59-80

UDC 519.8
A. V. Miloserdov
Permutation binomial functions over finite fields

Abstract:
We consider binomial functions over a finite field of order $2^n$. Some necessary condition is found for such a binomial function to be a permutation. It is proved that there are no permutation binomial functions in the case that $2^{n} - 1$ is prime. Permutation binomial functions are constructed in the case when $n$ is composite and found for $n \le 8$.
Tab. 2, bibliogr. 30.

Keywords: vectorial Boolean function, binomial function, permutation, APN function.

DOI: 10.17377/daio.2018.25.611

Aleksey V. Miloserdov 1
1. Novosibirsk State University,
2 Pirogov St., 630090 Novosibirsk, Russia
e-mail: amiloserdov6@gmail.com

Received 20 February 2018
Revised 4 June 2018

References

[1] M. M. Glukhov, On the approximation of discrete functions by linear functions, Mat. Vopr. Kriptogr., 7, No. 4, 29–50, 2016 [Russian].

[2] A. A. Gorodilova, From cryptanalysis to cryptographic property of a Boolean function, Prikl. Diskretn. Mat., No. 3, 16–44, 2016 [Russian].

[3] D. P. Pokrasenko, On the maximal component algebraic immunity of vectorial Boolean functions, Diskretn. Anal. Issled. Oper., 23, No. 2, 88–99, 2016 [Russian]. Translated in J. Appl. Ind. Math., 10, No. 2, 257–263, 2016.

[4] V. N. Sachkov, Combinatorial properties of differentially 2-uniform substitutions, Mat. Vopr. Kriptogr., 6, No. 1, 159–179, 2015 [Russian].

[5] N. N. Tokareva, Symmetric Cryptography: A Brief Course, Novosib. Gos. Univ., Novosibirsk, 2012 [Russian].

[6] M. E. Tuzhilin, APN-functions, Prikl. Diskretn. Mat., No. 3, 14–20, 2009 [Russian].

[7] M. Ayad, K. Belghaba, and O. Kihel, On permutation binomials over finite fields, Bull. Aust. Math. Soc., 89, No. 1, 112–124, 2014.

[8] C. Bracken, E. Byrne, N. Markin, and G. McGuire, Fourier spectra of binomial APN functions, SIAM J. Discrete Math., 23, No. 2, 596–608, 2009.

[9] L. Budaghyan, Construction and Analysis of Cryptographic Functions, Springer, Cham, 2015.

[10] L. Budaghyan, C. Carlet, P. Felke, and G. Leander, An infinite class of quadratic APN functions which are not equivalent to power mappings, in Proc. 17th IEEE Int. Symp. Inf. Theory, Seattle, USA, July 9–14, pp. 2637–2641, IEEE, Piscataway, 2006.

[11] L. Budaghyan, C. Carlet, and G. Leander, Another class of quadratic APN binomials over $\mathbb F_{2^n}$: The case $n$ divisible by 4, in Proc. Int. Workshop Coding Cryptogr., Versailles, France, Apr. 16–20, pp. 49–58, 2007.

[12] L. Budaghyan, C. Carlet, and G. Leander, Constructing new APN functions from known ones, Finite Fields Appl., 15, No. 2, 150–159, 2009.

[13] A. Canteaut, P. Charpin, and G. Kyureghyan, A new class of monomial bent functions, Finite Fields Appl., 14, No. 1, 221–241, 2008.

[14] C. Carlet, On the algebraic immunities and higher order nonlinearities of vectorial Boolean functions, in Enhancing Cryptographic Primitives with Techniques from Error Correcting Codes (Proc. NATO Adv. Res. Workshop ACPTECC, Veliko Tarnovo, Bulgaria, Oct. 6–9, 2008), pp. 104–116, IOS Press, Amsterdam, 2009.

[15] C. Carlet, Boolean functions for cryptography and error-correcting codes, in Boolean Models and Methods in Mathematics, Computer Science, and Engineering, pp. 257–397, Cambridge Univ. Press, New York, 2010 (Encycl. Math. Its Appl., Vol. 134).

[16] C. Carlet, Vectorial Boolean functions for cryptography, in Boolean Models and Methods in Mathematics, Computer Science, and Engineering, pp. 398–472, Cambridge Univ. Press, New York, 2010 (Encycl. Math. Its Appl., Vol. 134).

[17] J. Daemen and V. Rijmen, AES Proposal: Rijndael, Belgium, 1999.

[18] J. Daemen and V. Rijmen, The Design of Rijndael, Springer, Heidelberg, 2002.

[19] H. Dobbertin, Almost perfect nonlinear power functions on $\mathbb F_{2^n}$: The Welch case, IEEE Trans. Inf. Theory, 45, No. 4, 1271–1275, 1999.

[20] H. Dobbertin and G. Leander, A survey of some recent results on bent functions, in Sequences and Their Applications – SETA 2004 (Revis. Sel. Pap. 3rd Int. Conf., Seoul, Korea, Oct. 24–28, 2004), pp. 1–29, Springer, Heidelberg, 2005 (Lect. Notes Comput. Sci., Vol. 3486).

[21] H. Dobbertin, G. Leander, A. Canteaut, C. Carlet, P. Felkea, and P. Gaborit, Construction of bent functions via Niho power functions, J. Comb. Theory, Ser. A, 113, No. 5, 779–798, 2006.

[22] X. Hou, Permutation polynomials over finite fields – A survey of recent advances, Finite Fields Appl., 32, 82–119, 2015.

[23] A. M. Masuda and M. E. Zieve, Permutation binomials over finite fields, Trans. Am. Math. Soc., 361, No. 8, 4169–4180, 2009.

[24] H. Niederreiter and K. H. Robinson, Complete mappings of finite fields, J. Aust. Math. Soc., 33, No. 2, 197–212, 1982.

[25] K. Nyberg, Differentially uniform mappings for cryptography, in Advances in Cryptology — EUROCRYPT’93 (Proc. Workshop Theory Appl. Cryptogr. Tech., Lofthus, Norway, May 23–27, 1993), pp. 55–64, Springer, Heidelberg, 1994 (Lect. Notes Comput. Sci., Vol. 765).

[26] G. Seroussi, Table of low-weight binary irreducible polynomials, Tech. Rep. HPL-98-135, Hewlett-Packard, 1998.

[27] N. N. Tokareva, Bent Functions: Results and Applications to Cryptography, Acad. Press, London, 2015.

[28] G. Turnwald, Permutation polynomials of binomial type, in Contributions to General Algebra, Vol. 6, pp. 281–286, Hölder-Pichler-Tempsky, Vienna, 1988.

[29] C. J. Shallue, Permutation polynomials of finite fields, Honours project, Monash University, 2012.

[30] M. Yang, Q. Meng, and H. Zhang, Evolutionary design of trace form bent functions, 2005 (Cryptol. ePrint Arch., Rep. 2005/322).
 © Sobolev Institute of Mathematics, 2015