EN|RU
English version:
Journal of Applied and Industrial Mathematics, 2018, 12:4, 642–647

Volume 25, No 4, 2018, P. 5-14

UDC 519.17
A. A. Dobrynin
On 2-connected transmission irregular graphs

Abstract:
The transmission of a vertex $v$ in a graph is the sum of the distances from $v$ to all other vertices of the graph. In a transmission irregular graph, the transmissions of all vertices are pairwise distinct. It is known that almost all graphs are not transmission irregular. Some infinite family of transmission irregular trees was constructed by Alizadeh and Klavzar [Appl. Math. Comput., 328, 113–118, 2018] and the following problem was formulated: Is there an infinite family of 2-connected graphs with the property? In this article, we construct an infinite family of 2-connected transmission irregular graphs.
Tab. 2, illustr. 2, bibliogr. 21.

Keywords: graph, vertex transmission, transmission irregular graph, Wiener index.

DOI: 10.17377/daio.2018.25.620

Andrey A. Dobrynin 1
1. Sobolev Institute of Mathematics,
4 Koptyug Ave., 630090 Novosibirsk, Russia
e-mail: dobr@math.nsc.ru

Received 3 May 2018

References

[1] A. Abiad, B. Brimkov, B. Erey, L. Leshock, X. Martinez-Rivera, S. O. S.-Y. Song, and J. Williford, On the Wiener index, distance cospectrality and transmission-regular graphs, Discrete Appl. Math., 230, 1–10,
2017.

[2] Y. Alizadeh, V. Andova, S. Klavzar, and R. Škrekovski, Wiener dimension: Fundamental properties and (5, 0)-nanotubical fullerenes, MATCH Commun. Math. Comput. Chem., 72, 279–294, 2014.

[3] Y. Alizadeh and S. Klavzar, Complexity of topological indices: the case of connective eccentric index, MATCH Commun. Math. Comput. Chem., 76, 659–667, 2016.

[4] Y. Alizadeh and S. Klavzar, On graphs whose Wiener complexity equals their order and on Wiener index of asymmetric graphs, Appl. Math. Comput., 328, 113–118, 2018.

[5] K. Balakrishnan, B. Brešar, M. Changat, S. Klavzar, M. Kovše, and A. R. Subhamathi, Computing median and antimedian sets in median graphs, Algorithmica, 57, 207–216, 2010.

[6] D. Bonchev, Shannon’s information and complexity, in Complexity in Chemistry: Introduction and Fundamentals, pp. 155–187, Taylor & Francis, Lon?don, 2003 (Math. Chem. Ser., Vol. 7).

[7] M. Dehmer and F. Emmert-Streib (eds.), Quantitative Graph Theory: Mathematical Foundations and Applications, CRC Press, Boca Raton, 2014 (Discrete Math. Its Appl.).

[8] A. A. Dobrynin, R. Entringer, and I. Gutman, Wiener index of trees: Theory and applications, Acta Appl. Math., 66, No. 3, 211–249, 2001.

[9] A. A. Dobrynin, I. Gutman, S. Klavzar, and P. Zigert, Wiener index of hexagonal systems, Acta Appl. Math., 72, No. 3, 247–294, 2002.

[10] A. A. Dobrynin and L. S. Mel’nikov, Wiener index of line graphs, in Distance in Molecular Graphs — Theory, pp. 85–121, Univ. Kragujevac, Kragujevac, 2012 (Math. Chem. Monogr., Vol. 12).

[11] R. C. Entringer, Distance in graphs: Trees, J. Combin. Math. Combin. Comput., 24, 65–84, 1997.

[12] R. C. Entringer, D. E. Jackson, and D. A. Snyder, Distance in graphs, Czechoslov. Math. J., 26, 283–296, 1976.

[13] I. Gutman and B. Furtula (eds.), Distance in Molecular Graphs — Theory, Univ. Kragujevac, Kragujevac, 2012 (Math. Chem. Monogr., Vol. 12).

[14] I. Gutman and B. Furtula (eds.), Distance in Molecular Graphs — Applications, Univ. Kragujevac, Kragujevac, 2012 (Math. Chem. Monogr., Vol. 13).

[15] I. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer-Verl., Heidelberg, 1986.

[16] M. Knor and R. Škrekovski, Wiener index of line graphs, in Quantitative Graph Theory: Mathematical Foundations and Applications, pp. 279–301, CRC Press, Boca Raton, 2014 (Discrete Math. Its Appl.).

[17] M. Knor, R. Škrekovski, and A. Tepeh, Mathematical aspects of Wiener index, Ars Math. Contemp., 11, No. 2, 327–352, 2016.

[18] M. Krnc and R. Škrekovski, Centralization of transmission in networks, Discrete Math., 338, 2412–2420, 2015.

[19] J. Plesnik, On the sum of all distances in a graph or digraph, J. Graph Theory, 8, 1–21, 1984.

[20] C. Smart and P. J. Slater, Center, median, and centroid subgraphs, Networks, 34, 303–311, 1999.

[21] N. Trinajstic, Chemical Graph Theory, CRC Press, Boca Raton, 1983.
 © Sobolev Institute of Mathematics, 2015