EN|RU
English version: Journal of Applied and Industrial Mathematics, 2019, 13:1, 54-64 |
![]() |
Volume 26, No 1, 2019, P. 55-73 UDC 519.8
Keywords: Stackelberg game, competitive pricing problem, three-level problem, uniform and mill pricing, exact and approximate algorithm, variable neighborhood descent, coordinate descent, decomposition. DOI: 10.33048/daio.2019.26.625 Anna V. Gubareva 1 Received July 23, 2018 References[1] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, 1979. Translated under the title Vychislitel’nye mashiny i trudnoreshaemye zadachi, Mir, Moscow, 1982 [Russian].[2] A. V. Plyasunov and A. A. Panin, The pricing problem. Part I: Exact and approximate algorithms, Diskretn. Anal. Issled. Oper., 19, No. 5, 83–100, 2012 [Russian]. Translated in J. Appl. Ind. Math., 7, No. 2, 241–251, 2013. [3] A. V. Plyasunov and A. A. Panin, The pricing problem. Part II: Computational complexity, Diskretn. Anal. Issled. Oper., 19, No. 6, 56–71, 2012 [Russian]. Translated in J. Appl. Ind. Math., 7, No. 3, 420–430, 2013. [4] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi, Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties, Springer, Heidelberg, 1999. [5] C. Florensa, P. Garcia-Herreros, P. Misra, E. Arslan, S. Mehta, and I. E. Grossmann, Capacity planning with competitive decision-makers: Trilevel MILP formulation, degeneracy, and solution approaches, Eur. J. Oper. Res., 262, No. 2, 449–463, 2017. [6] A. M. Geoffrion, Generalized Benders decomposition, J. Optim. Theory Appl., 10, No. 4, 237–260, 1972. [7] P. Hansen and N. Mladenovic, Variable neighborhood search, Eur. J. Oper. Res., 130, No. 3, 449–467, 2001. [8] E. W. Leggette, Jr. and D. J. Moore, Optimization problems and the polynomial hierarchy, Theor. Comput. Sci., 15, No. 3, 279–289, 1981. [9] D. McDaniel and M. Devine, A modified Benders partitioning algorithm for mixed integer programming, Manage. Sci., 24, No. 3, 312–319, 1977. [10] J. V. Outrata, On the numerical solution of a class of Stackelberg problems, ZOR, 34, No. 4, 255–277, 1990. [11] A. V. Plyasunov and A. A. Panin, On three-level problem of competitive pricing, in Numerical Computations: Theory and Algorithms (Proc. 2nd Int. Conf., Pizzo Calabro, Italy, June 19–25, 2016), pp. 050006-1–050006-5, AIP Publ., Melville, NY, 2016 (AIP Conf. Proc., Vol. 1776). [12] F. Vanderbeck and M. W. P. Savelsbergh, A generic view of Dantzig–Wolfe decomposition for integer programming, Oper. Res. Lett., 34, No. 3, 296–306, 2006. |
|
![]() |
|
© Sobolev Institute of Mathematics, 2015 | |
![]() |
|