EN|RU
English version:
Journal of Applied and Industrial Mathematics, 2019, 13:2, 317-326

Volume 26, No 2, 2019, P. 129-144

UDC 519.1
A. A. Sapozhenko and V. G. Sargsyan
Asymptotics for the logarithm of the number of $(k, l)$-solution-free collections in an interval of naturals

Abstract:
A collection $(A_1, \ldots , A_{k+l})$ of subsets of an interval $[1, n]$ of naturals is called $(k, l)$-solution-free if there is no set $(a_1, \ldots , a_{k+l}) \in A_1 \times \cdots \times A_{k+l}$ that is a solution to the equation $x_1 + \cdots + x_k = x_{k+1} + \cdots + x_{k+l}$. We obtain the asymptotics for the logarithm of the number of sets $(k, l)$-free of solutions in an interval $[1, n]$ of naturals.
Bibliogr. 17.

Keywords: set, group, coset, characteristic function, progression.

DOI: 10.33048/daio.2019.26.610

Alexandr A. Sapozhenko 1
Vahe G. Sargsyan 1

1. Lomonosov Moscow State University,
1 Leninskie Gory, 119991 Moscow, Russia
e-mail: sapozhenko@mail.ru, vahe_sargsyan@ymail.com

Received February 20, 2018
Revised December 10, 2018
Accepted February 27, 2019

References

[1] A. A. Sapozhenko, On the number of sum-free sets in Abelian groups, Vestn. Mosk. Univ., Ser. 1, 4, 14–17, 2002 [Russian].

[2] A. A. Sapozhenko, The Cameron–Erdös conjecture, Dokl. Akad. Nauk, 393, No. 6, 749–752, 2003 [Russian].

[3] A. A. Sapozhenko, Solution of the Cameron–Erdös problem for groups of prime order, Zh. Vychisl. Mat. Mat. Fiz., 49, No. 8, 1503–1509, 2009 [Russian]. Translated in Comput. Math. Math. Phys., 49, No. 6, 1435–1441, 2009.

[4] V. G. Sargsyan, Asymptotics of the logarithm of the number of $(k, l)$-sumfree sets in an Abelian group, Diskretn. Mat., 26, No. 1, 91–99, 2014 [Russian]. Translated in Discrete Math. Appl., 25, No. 2, 93–99, 2014.

[5] N. Alon, Independent sets in regular graphs and sum-free subsets of Abelian groups, Isr. J. Math., 73, 247–256, 1991.

[6] Yu. Bilu, Sum-free sets and related sets, Combinatorica, 18, No. 4, 449–459, 1998.

[7] N. J Calkin, On the number of sum-free set, Bull. Lond. Math. Soc., 22, 140–144, 1990.

[8] N. J. Calkin and A. C. Taylor, Counting sets of integers, no $k$ of which sum to another, J. Number Theory, 57, 323–327, 1996.

[9] N. J. Calkin and J. M. Thomson, Counting generalized sum-free sets, J. Number Theory, 68, 151–160, 1998.

[10] P. J Cameron and P. Erdös, On the number of sets of integers with various properties, in Number Theory (Proc. 1st Conf. Can. Number Theory Assoc., Banff, Canada, Apr. 17–27, 1988), pp. 61–79, Berlin: de Gruyter, 1990.

[11] B. Green, The Cameron–Erdös conjecture, Bull. Lond. Math. Soc., 36, No. 6, 769–778, 2004.

[12] B. Green, A Szemerédi-type regularity lemma in Abelian groups, Geom. Funct. Anal., 15, No. 2, 340–376, 2005.

[13] B. Green and I. Z. Ruzsa, Sum-free sets in Abelian groups, Isr. J. Math., 147, 157–188, 2005.

[14] V. F. Lev, Sharp estimates for the number of sum-free sets, J. Reine Angew. Math., 555, 1–25, 2003.

[15] V. F. Lev, T. Luczak, and T. Schoen, Sum-free sets in Abelian groups, Isr. J. Math., 125, 347–367, 2001.

[16] V. F. Lev and T. Schoen, Cameron–Erdös modulo a prime, Finite Fields Appl., 8, No. 1, 108–119, 2002.

[17] T. Schoen, A note on the number of $(k, l)$-sum-free sets, Electron. J. Comb., 17, No. 1, 1–8, 2000.
 © Sobolev Institute of Mathematics, 2015