EN|RU
English version: Journal of Applied and Industrial Mathematics, 2019, 13:4, 753-758 |
![]() |
Volume 26, No 4, 2019, P. 121-131 UDC 519.7
Keywords: intersection graph, Nagy graph, homogeneous bent function, maximal clique. DOI: 10.33048/daio.2019.26.649 Aleksandr S. Shaporenko 1,2 Received February 25, 2019 References[1] O. S. Rothaus, On “bent” functions, J. Comb. Theory , Ser. A 20 (3), 300–305 (1976).[2] C. Qu, J. Seberry, and J. Pieprzyk, Homogeneous bent functions, Discrete Appl. Math. 102 (1–2), 133–139 (2000). [3] C. Charnes, M. Rotteler, and T. Beth, Homogeneous bent functions, invariants, and designs, Des. Codes Cryptogr. 26 (1–2), 139–154 (2002). [4] A. Bernasconi and B. Codenotti, Spectral analysis of Boolean functions as a graph eigenvalue problem, IEEE Trans. Comput. 48 (3), 345–351 (1999). [5] A. Bernasconi, B. Codenotti, and J. M. Vanderkam, A characterization of bent functions in terms of strongly regular graphs, IEEE Trans. Comput. 50 (9), 984–985 (2001). [6] N. A. Kolomeec, An upper bound for the number of bent functions at distance $2^k$ from an arbitrary bent function of $2k$ variables, Prikl. Diskretn. Mat., No. 3, 28–39 (2014) [Russian]. [7] N. A. Kolomeec, On connectivity of the minimal distance graph for the set of bent functions, Prikl. Diskretn. Mat., Suppl., No. 8, 33–34 (2015) [Russian]. [8] E. P. Korsakova, Some classification of the graphs for quadratic bent functions of 6 variables, Diskretn. Anal. Issled. Oper. 20 (5), 45–47 (2013) [Russian]. [9] N. Tokareva, Bent Functions: Results and Applications to Cryptography (Acad. Press, Amsterdam, 2015). |
|
![]() |
|
© Sobolev Institute of Mathematics, 2015 | |
![]() |
|