EN|RU
English version:
Journal of Applied and Industrial Mathematics, 2019, 13:4, 600-605

Volume 26, No 4, 2019, P. 5-15

UDC 519.725
S. V. Avgustinovich and E. V. Gorkunov
Maximum intersection of linear codes and codes equivalent to linear

Abstract:
We consider linear codes in a space over a finite field with the Hamming metric. A code is called pseudolinear if it is the image of a linear code under an isometric transformation of the space. We derive an upper bound $(q - 2)M/q$ attainable for $q \ge 3$ for the size of the intersection of two different pseudolinear codes of the same size $M$.
Bibliogr. 10.

Keywords: linear code, pseudolinear code, MDS-code, code intersection, equivalent codes, isometry, isotopy, finite field.

DOI: 10.33048/daio.2019.26.669

Sergey V. Avgustinovich 1,2
Evgeny V. Gorkunov 1,2

1. Sobolev Institute of Mathematics,
4 Koptyug Ave., 630090 Novosibirsk, Russia
2. Novosibirsk State University,
2 Pirogov St., 630090 Novosibirsk, Russia
e-mail: avgust@math.nsc.ru, gorkunov@math.nsc.ru

Received July 23, 2019
Revised August 27, 2019
Accepted August 28, 2019

References

[1] A. A. Markov, On transformations without error propagation, in Selected Works, Vol. II: Theory of Algorithms and Constructive Mathematics. Mathematical Logic. Information Science and Related Topics (MTsNMO, Moscow, 2003), pp. 70–93 [Russian].

[2] E. Bar-Yahalom and T. Etzion, Intersection of isomorphic linear codes, J. Comb. Theory, Ser. A 80 (1), 247–256 (1997).

[3] T. Etzion and A. Vardy, Perfect binary codes and tilings: Problems and solutions, SIAM J. Discrete Math. 11 (2), 205–223 (1998).

[4] V. N. Potapov, Cardinality spectra of components of correlation immune functions, bent functions, perfect colorings, and codes, Probl. Peredachi Inf. 48 (1), 54–63 (2012) [Russian] [Probl. Inf. Transm. 48 (1), 47–55 (2012)].

[5] S. V. Avgustinovich, F. I. Solov’eva, and O. Heden, Partitions of an $n$-cube into nonequivalent perfect codes, Probl. Peredachi Inf. 43 (4), 45–50 (2007) [Russian] [Probl. Inf. Transm. 43 (4), 310–315 (2007)].

[6] A. V. Los’ and F. I. Solov’eva, On partitions of the space $F_q^N$ into affine nonequivalent perfect $q$-ary codes, Sib. Elektron. Mat. Izv. 7, 425–434 (2010) [Russian].

[7] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes (North-Holland, Amsterdam, 1977; Svyaz’, Moscow, 1979 [Russian]).

[8] S. Frisch, On the minimal distance between group tables, Acta Sci. Math. (Szeged) 63, 341–351 (1997).

[9] D. S. Krotov, V. N. Potapov, and P. V. Sokolova, On reconstructing reducible $n$-ary quasigroups and switching subquasigroups, Quasigr. Relat. Syst. 16, 55–67 (2008).

[10] V. N. Potapov and D. S. Krotov, Asymptotics for the number of $n$-quasigroups of order 4, Sib. Mat. Zh. 47 (4), 873–887 (2006) [Russian] [Sib. Math. J. 47 (4), 720–731 (2006)].
 © Sobolev Institute of Mathematics, 2015