EN|RU
English version: Journal of Applied and Industrial Mathematics, 2020, 14:2, 369-384 |
![]() |
Volume 27, No 2, 2020, P. 90-116 UDC 519.174.3
Keywords: subgraph packing, vertex cover, five-vertex path, König graph. DOI: 10.33048/daio.2020.27.639 Dmitry B. Mokeev 1,2 Received November 13, 2018 References[1] V. E. Alekseev and D. B. Mokeev, König graphs for 3-path, Diskretn. Anal. Issled. Oper. 19 (4), 3–14 (2012) [Russian].[2] V. E. Alekseev, Hereditary classes and graph encoding, Probl. Cybern. 39, 151–164 (1982) [Russian]. [3] F. Kardoš, J. Katrenic, and I. Schiermeyer, On computing the minimum 3-path vertex cover and dissociation number of graphs, Theor. Comput. Sci. 412 (50), 7009–7017 (2011). [4] Y. Li and J. Tu, A 2-approximation algorithm for the vertex cover $P_5$ problem in cubic graphs, Int. J. Comput. Math. 91 (10), 2103–2108 (2014). [5] B. Brešar, F. Kardoš, J. Katrenic, and G. Semanišin, Minimum $k$-path vertex cover, Discrete Appl. Math. 159 (12), 1189–1195 (2011). [6] J. Tu and W. Zhou, A primal-dual approximation algorithm for the vertex cover $P_3$ problem, Theor. Comput. Sci. 412 (50), 7044–7048 (2011). [7] J. Edmonds, Paths, trees, and flowers, Can. J. Math. 17 (3–4), 449–467 (1965). [8] D. G. Kirkpatrick and P. Hell , On the completeness of a generalized matching problem in Proc. 10th Annu. ACM Symp. Theory Comput., San Diego, CA, USA, May 1–3, 1978 (New York, ACM, 1978), [9] S. Masuyama and T. Ibaraki, Chain packing in graph, Algorithmica 6 (1), 826–839 (1991). [10] N. S. Devi, A. C. Mane, and S. Mishra, Computational complexity of minimum $P_5$ vertex cover problem for regular and K1,4-free graphs, Discrete Appl. Math. 184, 114–121 (2015). [11] R. W. Deming, Independence numbers of graphs – An extension of the König–Egervary theorem, Discrete Math. 27 (1), 23–33 (1979). [12] A. Kosowski, M. Malafiejski, and P. Zylinski, Combinatorial and computational aspects of graph packing and graph decomposition, Graphs Comb. 24 (5), 461–468 (2008). [13.] F. Sterboul, A characterization of graphs in which the transversal number equals the matching number, J. Comb. Theory, Ser. B, 27 (2), 228–229 (1979). [14] D. S. Malyshev and D. B. Mokeev, König graphs with respect to 4-paths and its spanning supergraphs, Diskretn. Anal. Issled. Oper. 26 (1), 74–88 (2019) [Russian]. [15] V. E. Alekseev and D. B. Mokeev, König graphs for 3-paths and 3-cycles, Discrete Appl. Math., 204, 1–5 (2016). [16] D. B. Mokeev, On the König graphs for $P_4$, Diskretn. Anal. Issled. Oper. 24 (3), 61–79 (2017) [Russian]. [17] D. B. Mokeev, $P_q$-König extended forests and cycles in Discrete Optimization and Operations Research (Suppl. Proc. 9th Int. Conf. DOOR 2016, Vladivostok, Russia, Sept. 19–23, 2016) (RWTH Aachen Univ., Aachen, 2016), pp. 86–95 (CEUR Workshop Proc., Vol. 1623). Available at http://ceur-ws.org/Vol-1623 (accessed May 22, 2020). [18] V. A. Emelichev, O. I. Melnikov, V. I. Sarvanov, and R. I. Tyshkevich, Lectures on Graph Theory (Nauka, Moscow, 1990 [Russian]; B. I. Wissenschaftsverlag, Mannheim, 1994). |
|
![]() |
|
© Sobolev Institute of Mathematics, 2015 | |
![]() |
|