EN|RU
English version: Journal of Applied and Industrial Mathematics, 2020, 14:2, 265-280 |
![]() |
Volume 27, No 2, 2020, P. 17-42 UDC 519.7
Keywords: MLD-code, majority decoding, group code, tensor product, graph. DOI: 10.33048/daio.2020.27.648 Vladimir M. Deundyak 1,2 Received February 24, 2019 References[1] J. L. Massey, Threshold Decoding, (MIT Press, Cambridge, 1963).[2] G. C. Clark, Jr. and J. B. Cain, Error-Correction Coding for Digital Communications (Plenum Press, New York, 1981; Radiosvyaz’, Moscow, 1981 [Russian]). [3] V. M. Sidel’nikov, Open encryption based on binary Reed–Muller codes, Diskretn. Mat. 6 (2), 3–20 (1994) [Russian]. [4] K.-Kh. Tsimmerman, Methods of the Modular Representations Theory in Algebraic Coding Theory (MTsNMO, Moscow, 2011) [Russian]. [5] NIST reveals 26 algorithms advancing to the post-quantum crypto ‘Semifinals’. Available at http://www.nist.gov/news-events/news/2019/01/nistreveals-26-algorithms-advancing-post-quantum-crypto-semifinals (accessed May 23, 2020). [6] M. A. Borodin and I. V. Chizhov, Effective attack on the McEliece cryptosystem based on Reed–Muller codes, Discrete Math. Appl. 26 (1), 273–280 (2014). [7] V. M. Sidel’nikov and S. O. Shestakov, On an encoding system constructed on the basis of generalized Reed–Solomon codes, Discrete Math. Appl. 2 (4), 439–444 (1992). [8] L. Minder and A. Shokrollahi, Cryptanalysis of the Sidelnikov cryptosystem, Advances in Cryptology – EUROCRYPT 2007 (Proc. 26th Annu. Int. Conf. Theory Appl. Cryptogr. Tech., Barcelona, Spain, May 20–24, 2007) (Springer, Heidelberg, 2007), pp. 347–360 (Lect. Notes Comput. Sci., Vol. 4515). [9] C. Wieschebrink, Cryptanalysis of the Niederreiter Public Key Scheme Based on GRS Subcodes Post-Quantum Cryptography (Proc. 3rd Int. Workshop, Darmstadt, Germany, May 25–28, 2010) (Springer, Heidelberg, 2010), pp. 61–72 (Lect. Notes Comput. Sci., Vol. 6061). [10] V. M. Deundyak and Yu. V. Kosolapov, Cryptosystem based on induced group codes, Model. Anal. Inf. Sist. 23 (2), 137–152 (2016) [Russian]. [11] V. M. Deundyak, Yu. V. Kosolapov, and E. A. Lelyuk, Decoding the tensor product of MLD codes and applications for code cryptosystems, Model. Anal. Inf. Sist. 24 (2), 239–252 (2017) [Russian] [Autom. Control Comput. Sci. 52 (7), 647–657 (2018)]. [12] T. Kasami and S. Lin, On the construction of a class of majority-logic decodable codes, IEEE Trans. Inf. Theory IT-17 (5), 600–610 (1971). [13] V. M. Sidel’nikov, Coding Theory (FIZMATLIT, Moscow, 2008) [Russian]. [14] R. H. Morelos-Zaragoza, The Art of Error Correcting Coding (Wiley, Chichester, 2006). [15] Eh. L. Blokh and V. V. Zyablov, Coding by generalized concatenated codes, Probl. Peredachi Inf. 10 (3), 45–50 (1974) [Russian] [Probl. Inf. Transm. 10 (3), 218–222 (1974)]. [16] V. A. Zinov’ev, Generalized concatenated codes, Probl. Peredachi Inf. 12 (1), 5–15 (1976) [Russian]. [17] V. M. Deundyak and Y. V. Kosolapov, Algorithms for majority decoding of group codes, Model. Anal. Inf. Sist. 22 (4), 464–482 (2015) [Russian]. [18] C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras (Interscience, New York, 1962). |
|
![]() |
|
© Sobolev Institute of Mathematics, 2015 | |
![]() |
|