EN|RU
English version: Journal of Applied and Industrial Mathematics, 2020, 14:2, 308-320 |
![]() |
Volume 27, No 2, 2020, P. 117-135 UDC 519.17
Keywords: mixing digraph, primitive digraph, locally primitive digraph, feedback shift register, exponent of a digraph. DOI: 10.33048/daio.2020.27.670 Vladimir M. Fomichev 1,2,3,4 Received September 6, 2019 References[1] G. Frobenius, Über Matrizen aus nicht negativen Elementen, Berl. Ber., 456–477 (1912) [German].[2] A. L. Dulmage and N. S. Mendelsohn, The exponent of a primitive matrix, Can. Math. Bull. 5 (3), 241–244 (1962). [3] V. M. Fomichev, Ya. E. Avezova, A. M. Koreneva, and S. N. Kyazhin, Primitivity and local primitivity of digraphs and nonnegative matrices, Diskretn. Anal. Issled. Oper. 25 (3), 95–125 (2018) [Russian] [J. Appl. Ind. Math. 12 (3), 453–469 (2018)]. [4] V. M. Fomichev, Methods of Discrete Mathematics in Cryptology (Dialog-MIFI, Moscow, 2010) [Russian]. [5] V. Yu. Protasov, Semigroups of non-negative matrices, Usp. Mat. Nauk, No. 6, 191–192 (2010) [Russian] [Rus. Math. Surv. 65 (6), 1186–1188 (2010)]. [6] V. Yu. Protasov and A. S. Voynov, Sets of nonnegative matrices without positive products, Linear Algebra Appl. 437 (3), 749–765 (2012). [7] A. S. Voynov, Shortest positive products of nonnegative matrices, Linear Algebra Appl. 439 (6), 1627–1634 (2013). [8] R. A. Brualdi and B. Liu, Generalized exponents of primitive directed graphs, J. Graph Theory 14 (4), 483–499 (1990). [9] B. Liu, Generalized exponents of Boolean matrices, Linear Algebra Appl. 373, 169–182 (2003). [10] V. M. Fomichev and S. N. Kyazhin, Local primitivity of matrices and graphs, Diskretn. Anal. Issled. Oper. 24 (1), 97–119 (2017) [Russian] [J. Appl. Ind. Math. 11 (1), 26–39 (2017)]. [11] H. Wielandt, Unzerlegbare, nicht negative Matrizen, Math. Z. 52, 642–648 (1950) [German]. [12] P. Perkins, A theorem on regular graphs, Pac. J. Math. 11 (4), 1529–1533 (1961). [13] A. L. Dulmage and N. S. Mendelsohn, Gaps in the exponent set of primitive matrices, Ill. J. Math. 8 (4), 642–656 (1964). [14] S. W. Neufeld, A diameter bound on the exponent of a primitive directed graph, Linear Algebra Appl. 245, 27–47 (1996). [15] A. V. Knyazev, Estimations for extreme values of principal metric characteristics of pseudosymmetrical graphs, Dr. Sci. Diss. (VTs RAN, Moscow, 2016) [Russian]. [16] V. M. Fomichev The new universal estimation for exponents of graphs, Prikl. Diskretn. Mat., No. 3, 78–84 (2016) [Russian]. [17] V. M. Fomichev On improved universal estimation of exponents of digraphs, Prikl. Diskretn. Mat., No. 43, 115–123 (2019) [Russian]. [18] S. W. Golomb Shift register sequences – A retrospective account, in Sequences and Their Applications (Proc. 4th Int. Conf. SETA–2006, Beijing, China, Sept. 24–28, 2006) (Springer, Heidelberg, 2012), pp. 1–4 (Lect. Notes Comput. Sci., Vol. 4086). [19] M. Goresky and A. Klapper, Algebraic Shift Register Sequences (Camb. Univ. Press, Cambridge, 2012). [20] V. I. Solodovnikov, Shift Registers and Cryptographic Algorithms Based on Them (Lambert Acad. Publ., Saarbrücken, 2017) [Russian]. |
|
![]() |
|
© Sobolev Institute of Mathematics, 2015 | |
![]() |
|