EN|RU
English version: Journal of Applied and Industrial Mathematics, 2020, 14:4, 706-721 |
![]() |
Volume 27, No 4, 2020, P. 104-130 UDC 519.17
Keywords: edge coloring problem, strongly hereditary class, computational complexity. DOI: 10.33048/daio.2020.27.682 Dmitry S. Malyshev 1 Received January 22, 2020 References[1] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, New York, 1979).[2] I. Holyer, The NP-completeness of edge-coloring, SIAM J. Comput. 10 (4), 718–720 (1981). [3] V. G. Vizing, On estimation of the chromatic index of a $p$-graph, in Descrete Analysis, Vol. 3 (Inst. Mat. SO AN SSSR, Novosibirsk, 1964), pp. 25–30. [4] D. Král’, J. Kratochvíl, Z. Tuza, and G. J. Woeginger, Complexity of coloring graphs without forbidden induced subgraphs, in Proc. 27th Int. Workshop Graph-Theoretic Concepts Comput. Sci., Boltenhagen, Germany, June 14–16, 2001 (Springer, Heidelberg, 2001), pp. 254–262 (Lect. Notes Comput. Sci., Vol. 2204). [5] V. V. Lozin and D. S. Malyshev, Vertex coloring of graphs with few obstructions, Discrete Appl. Math. 216, 273–280 (2017). [6] C. T. Hoàng and D. Lazzarato, Polynomial-time algorithms for minimum weighted colorings of ($P_5$, $\overline P_5$)-free graphs and similar graph classes, Discrete Appl. Math. 186, 105–111 (2015). [7] T. Karthick, F. Maffray, and L. Pastor, Polynomial cases for the vertex coloring problem, Algorithmica 81 (3), 1053–1074 (2017). [8] D. S. Malyshev, The coloring problem for classes with two small obstructions, Optim. Lett. 8 (8), 2261–2270 (2014). [9] D. S. Malyshev, Two cases of polynomial-time solvability for the coloring problem, J. Comb. Optim. 31 (2), 833–845 (2016). [10] D. S. Malyshev, The weighted coloring problem for two graph classes characterized by small forbidden induced structures, Discrete Appl. Math. 47, 423–432 (2018). [11] D. S. Malyshev and O. O. Lobanova, Two complexity results for the vertex coloring problem, Discrete Appl. Math. 219, 158–166 (2017). [12] D. S. Malyshev, Polynomial-time approximation algorithms for the coloring problem in some cases, J. Comb. Optim. 33, 809–813 (2017). [13] K. Cameron, S. Huang, I. Penev, and V. Sivaraman, The class of ($P_7, C_4, C_5$)-free graphs: Decomposition, algorithms, and $\chi$-boundedness, J. Graph Theory 93 (4), 503–552 (2020). [14] K. Cameron, M. da Silva, S. Huang, and K. Vuskovic, Structure and algorithms for (cap, even hole)-free graphs, Discrete Math. 341, 463–473 (2018). [15] Y. Dai, A. Foley, and C. T. Hoàng, On coloring a class of claw-free graphs: To the memory of Frédéric Maffray, Electron. Notes Theor. Comput. Sci. 346, 369–377 (2019). [16] D. J. Fraser, A. M. Hamela, C. T. Hoàng, K. Holmes, and T. P. LaMantia, Characterizations of ($4K_1, C_4, C_5$)-free graphs, Discrete Appl. Math. 231, 166–174 (2017). [17] P. Golovach, M. Johnson, D. Paulusma, and J. Song, A survey on the computational complexity of coloring graphs with forbidden subgraphs, J. Graph Theory 84, 331–363 (2017). [18] H. J. Broersma, P. A. Golovach, D. Paulusma, and J. Song, Updating the complexity status of coloring graphs without a fixed induced linear forest, Theor. Comput. Sci. 414 (1), 9–19 (2012). [19] P. A. Golovach, D. Paulusma, and J. Song, 4-coloring $H$-free graphs when $H$ is small, Discrete Appl. Math. 161 (1–2), 140–150 (2013). [20] F. Bonomo, M. Chudnovsky, P. Maceli, O. Schaudt, M. Stein, and M. Zhong, Three-coloring and list three-coloring of graphs without induced paths on seven vertices, Combinatorica 38 (4), 779–801 (2018). [21] S. Spirkl, M. Chudnovsky, and M. Zhong, Four-coloring $P_6$-free graphs, in Proc. 30th Annu. ACM-SIAM Symp. Discrete Algorithms, San Diego, USA, Jan. 6–9, 2019 (SIAM, Philadelphia, PA, 2019), [22] C. T. Hoàng, M. Kaminski, V. V. Lozin, J. Sawada, and X. Shu, Deciding $k$-colorability of $P_5$-free graphs in polynomial time, Algorithmica 57 (1), 74–81 (2010). [23] S. Huang Improved complexity results on $k$-coloring $P_t$-free graphs, Eur. J. Comb. 51, 336–346 (2016). [24] D. S. Malyshev, The complexity of the 3-colorability problem in the absence of a pair of small forbidden induced subgraphs, Discrete Math. 338 (11), 1860–1865 (2015). [25] D. S. Malyshev, The complexity of the vertex 3-colorability problem for some hereditary classes defined by 5-vertex forbidden induced subgraphs, Graphs Comb. 33 (4), 1009–1022 (2017). [26] D. V. Sirotkin and D. S. Malyshev, On the complexity of the vertex 3-coloring problem for the hereditary graph classes with forbidden subgraphs of small size, Diskretn. Anal. Issled. Oper. 25 (4), 112–130 (2018) [Russian] [J. Appl. Ind. Math. 12 (4), 759–769 (2018)]. [27] E. Galby, P. T. Lima, D. Paulusma, and B. Ries, Classifying k-edge colouring for H-free graphs, Inf. Process. Lett. 146, 39–43 (2019). [28] D. S. Malyshev, The complexity of the edge 3-colorability problem for graphs without two induced fragments each on at most six vertices, Sib. Elektron. Mat. Izv. 11, 811–822 (2014). [29] D. S. Malyshev, Complexity classification of the edge coloring problem for a family of graph classes, Discrete Math. Appl. 27 (2), 97–101 (2017). [30] A. Schrijver, Combinatorial Optimization – Polyhedra and Efficiency (Springer, Heidelberg, 2003). [31] D. König, Gráfok és alkalmazásuk a determinánsok és a halmazok elméletére, Matematikai és Természettudományi Értesitö 34, 104–119 (1916) [Hungarian]. [32] B. Courcelle, J. Makowsky, and U. Rotics, Linear time solvable optimization problems on graphs of bounded clique-width, Theory Comput. Syst. 33 (2), 125–150 (2000). [33] R. Boliac and V. V. Lozin, On the clique-width of graphs in hereditary classes, Algorithms and Computation (Proc. 13th Int. Symp., Vancouver, Canada, Nov. 21–23, 2002) (Springer, Heidelberg, 2002), pp. 44–54 (Lect. Notes Comput. Sci., Vol. 2518). [34] F. Gurski and E. Wanke, Line graphs of bounded clique-width, Discrete Math. 307 (22), 2734–2754 (2007). [35] D. Kobler and D. Rotics, Edge dominating set and colorings on graphs with fixed clique-width, Discrete Appl. Math. 126 (2–3), 197–223 (2003). [36] V. V. Lozin and M. Kaminski, Coloring edges and vertices of graphs without short or long cycles, Contrib. Discrete Math. 2 (1), 61–66 (2007). |
|
![]() |
|
© Sobolev Institute of Mathematics, 2015 | |
![]() |
|