EN|RU
English version: Journal of Applied and Industrial Mathematics, 2020, 14:4, 792-801 |
![]() |
Volume 27, No 4, 2020, P. 5-20 UDC 519.8+518.25
Keywords: directed graph, weighted graph, maximum dicut, inclusion minimal dominating set. DOI: 10.33048/daio.2020.27.691 Vladimir V. Voroshilov 1 Received May 27, 2020 References[1] N. Christofides, Graph Theory: An Algorithmic Approach (Academic Press, London, 1975; Mir, Moscow, 1978 [Russian]).[2] R. M. Karp, Reducibility among combinatorial problems, Complexity of Computer Computations (Proc. Symp. CCC, Yorktown Heights, USA, March 20–22, 1972) (Plenum Press, New York, 1972), pp. 85–103. [3] A. Ageev, R. Hassin, and M. Sviridenko, A 0.5-approximation algorithm for max dicut with given sizes of parts, SIAM J. Discrete Math. 14 (2), 246–255 (2001). [4] J. Lee, N. Viswanath, and X. Shen, Max-cut under graph constraints, Programming and Combinatorial Optimization (Proc. 18th Int. Conf., Liège, Belgium, June 1–3, 2016) (Springer, Cham, 2016), pp. 50–62 (Lect. Notes Comput. Sci., Vol. 9682). [5] G. A. Cheston, G. Fricke, S. T. Hedetniemi, and D. P. Jacobs, On the computational complexity of upper fractional domination, Discrete Appl. Math. 27 (3), 195–207 (1990). [6] N. Boria, F. Della Croce, and V. Th. Paschosdef, On the max min vertex cover problem, Discrete Appl. Math. 196, 62–71 (2015). [7] R. Yu. Simanchev, I. V. Urazova, V. V. Voroshilov, V. V. Karpov, and A. A. Korableva, Selection of the key-indicator system for the economic security of a region using a (0, 1)-programming model, Vestn. Omsk. Univ., Ser. Ekonomika, 17 (3), 170–179 (2019) [Russian]. [8] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979; Mir, Moscow, 1982 [Russian]). |
|
![]() |
|
© Sobolev Institute of Mathematics, 2015 | |
![]() |
|