EN|RU
English version: Journal of Applied and Industrial Mathematics, 2021, 15:1, 169-174 |
![]() |
Volume 28, No 1, 2021, P. 5-14 UDC 519.175.3
Keywords: enumeration, labeled graph, series-parallel graph, $k$-cyclic graph, asymptotics, random graph. DOI: 10.33048/daio.2021.28.693 Vitaly A. Voblyi 1 Received June 11, 2020 References[1] M. Bodirsky, O. Gimenez, M. Kang, and M. Noy, Enumeration and limit laws of series-parallel graphs, Eur. J. Comb. 28 (8), 2091–2105 (2007).[2] S. Radhavan, Low-connectivity network design on series-parallel graphs, Networks 43 (3), 163–176 (2004). [3] V. A. Voblyi, The second Riddell relation and its consequences, Diskretn. Anal. Issled. Oper. 26 (1), 20–32 (2019) [Russian] [J. Appl. Ind. Math. 13 (1), 168–174 (2019)]. [4] V. A. Voblyi and A. M. Meleshko, On the number of labeled series-parallel tricyclic blocks, in Proc. XV Int. Conf. ”Algebra, number theory, and discrete geometry. Current problems and applications,” Tula, Russia, May 28-31, 2018, (Izd. TGPU, Tula, 2018), pp. 168–170 [Russian]. [5] V. A. Voblyi, The number of labeled tetracyclic series-parallel blocks, Prikl. Diskretn. Mat., No. 47, 57–61 (2020) [Russian]. [6] M. A. Lavrentyev and B. V. Shabat, Methods of the theory of functions of a complex variable (Nauka, Moscow, 1965) [Russian]. [7] V. A. Voblyi, Explicit formula for the number of labeled series-parallel $k$-cyclic blocks, Mat. Zametki 108 (4), 622-624 (2020) [Russian] [Math. Notes 108 (4), 608-610 (2020)]. [8] The on-line encyclopedia of integer sequences, (The OEIS Foundation, Highland Park, NJ, 2020). Available at http://oeis.org (accessed Oct. 27, 2020). [9] C. A. Charalambides, Enumerative combinatorics (CRC Press, Boca Raton, FL, 2002). [10] Yu. I. Medvedev and G. I. Ivchenko, Asymptotic representations of finite differences of a power function at an arbitrary point, Teor. Veroyatn. Primen., 10 (1), 151–156 (1965) [Russian] [Theory Probab. Appl., 10 (1), 139–144 (1965)]. [11] E. M. Wright, The number of connected sparsely edged graphs. IV, J. Graph Theory 7 (2), 219–229 (1983). |
|
![]() |
|
© Sobolev Institute of Mathematics, 2015 | |
![]() |
|