EN|RU
|
![]() |
Volume 28, No 2, 2021, P. 74-91 UDC
Keywords: coordinate polynomial of transformation, maximal mono?mial of a polynomial, degree of a polynomial. DOI: 10.33048/daio.2021.28.700 Vladimir M. Fomichev 1,2,3 Received September 28, 2020 References[1] V. M. Fomichev, Ya. Eh. Avezova, A. M. Koreneva, and S. N. Kyazhin, Primitivity and local primitivity of digraphs and nonnegative matrices, Diskretn. Anal. Issled. Oper. 25 (3), 95–125 (2018) [Russian] [J. Appl. Ind. Math. 12 (3), 453–469 (2018)].[2] V. M. Fomichev and A. M. Koreneva, Encryption performance and security of certain wide block ciphers, J. Comput. Virol. Hack. Tech. 16, 197–216 (2020). [3] V. M. Fomichev and V. M. Bobrov, Estimation of local nonlinearity characteristics of vector space transformation iteration using matrix-graph approach, Prikl. Diskretn. Mat., Prilozh., No. 12, 32–35 (2019) [Russian]. [4] G. Frobenius, Über Matrizen aus nicht negativen Elementen, Berl. Ber., 456–477 (1912) [German]. [5] H. Wielandt, Unzerlegbare, nicht negative Matrizen, Math. Z. 52, 642–648 (1950) [German]. [6] P. Perkins, A theorem on regular graphs, Pac. J. Math. 2, 1529–1533 (1961). [7] A. L. Dulmage and N. S. Mendelsohn, The exponent of a primitive matrix, Can. Math. Bull. 5 (3), 241–244 (1962). [8] A. L. Dulmage and N. S. Mendelsohn, Gaps in the exponent set of primitive matrices, Ill. J. Math. 8 (4), 642–656 (1964). [9] R. A. Brualdi and B. Liu, Generalized exponents of primitive directed graphs, J. Graph Theory. 14 (4), 483–499 (1990). [10] S. W. Neufeld, A diameter bound on the exponent of a primitive directed graph, Lin. Algebra Appl. 245, 27–47 (1996). [11] B. Liu, Generalized exponents of Boolean matrices, Lin. Algebra Appl. 373, 169–182 (2003). [12] V. N. Sachkov and V. E. Tarakanov, Combinatorics of Nonnegative Matrices (AMS, Providence, RI, 2002) (Transl. Math. Monogr., Vol. 213). [13] V. M. Fomichev and S. N. Kyazhin, Local primitivity of matrices and graphs, Diskretn. Anal. Issled. Oper. 24 (1), 97–119 (2017) [Russian] [J. Appl. Ind. Math. 11 (1), 26–39 (2017)]. [14] T. Suzaki and K. Minematsu, Improving the generalized Feistel, in Fast Software Encryption (Proc. 17th Int. Workshop, Seoul, Korea, Feb. 7–10, 2010) (Springer, Heidelberg, 2010), pp. 19–39 (Lect. Notes Comput. Sci., Vol. 6147). [15] T. Berger, J. Francq, M. Minier, and G. Thomas, Extended generalized Feistel networks using matrix representation to propose a new lightweight block cipher: Lilliput, IEEE Trans. Comput. 65 (7), 2074–2089 (2016). [16] T. Berger, M. Minier, and G. Thomas, Extended generalized Feistel networks using matrix representation, in Selected Areas in Cryptography — SAC 2013 (Proc. 20th Int. Conf., Burnaby, Canada, Aug. 14–16, 2013) (Springer, Heidelberg, 2014), pp. 289–305 (Lect. Notes Comput. Sci., Vol. 8282). [17] K. Nyberg, Generalized Feistel networks, in Advances in Cryptology — ASIACRYPT’96 (Proc. Int. Conf. Theory Appl. Cryptol. Inf. Secur., Kyongju, Korea, Nov. 3–7, 1996) (Springer, Heidelberg, 1996), [18] O. A. Logachyov, A. A. Salnikov, and V. V. Yashchenko, Boolean Functions in Coding Theory and Cryptology (MTsNMO, Moscow, 2004). |
|
![]() |
|
© Sobolev Institute of Mathematics, 2015 | |
![]() |
|