EN|RU

Volume 28, No 3, 2021, P. 65-89

UDC 519.8
N. N. Tyunin
The problems of non-convex quadratic programming related to phased antenna arrays optimization

Abstract:
The problem of short wave phased antenna arrays optimization was formulated as a quadratic programming problem. A penalty functions method and gradient ascent algorithm were applied to analyze a structure of a local optima set. The results of the proposed algorithm were compared with the results of the well-known BARON solver.
Tab. 2, illustr. 3, bibliogr. 32.

Keywords: Quadratic programming, local optimum, antenna array, gradient optimization, computational experiment.

DOI: 10.33048/daio.2021.28.694

Nikolay N. Tyunin 1
1. Omsk Branch of Sobolev Institute of Mathematics,
13 Pevtsov Street, 644043 Omsk, Russia
e-mail: n.n.tyunin@gmail.com

Received June 15, 2020
Revised March 7, 2021
Accepted March 9, 2021

References

[1] R. C. Hansen, Phased Array Antennas (Wiley, Hoboken, NJ, 2009).

[2] V. P. Kudzin, V. N. Lozovsky, and N. I. Shlyk, The compact linear antenna array system of the short-wave band consisting of «butterfly» radiators, in Proc. IX Int. Conf. Antenna Theory and Techniques, Odessa, Ukraine, Sept. 16–20, 2013 (IEEE, Piscataway, 2013), pp. 252–253.

[3] R. Wilensky, High-power, broad-bandwidth HF dipole curtain array with extensive vertical and azimuthal beam control, IEEE Trans. Broadcast. 34 (2), 201–209 (1988).

[4] Ya. Yin and J. Deng, Design of short wave communication system with phased array antenna, Electron. Eng. 33 (9), 31–33 (2007). [Chinese].

[5] D. M. Sazonov, Antennas and Microwave Devices (Vysshaya Shkola, Moscow, 1988) [Russian].

[6] M. Indenbom, V. Izhutkin, A. Sharapov, and A. Zonov, Synthesis of conical phased antenna arrays optimization of amplitude distribution parameters, in Proc. IX Int. Conf. Optimization and Applications, Petrovac, Montenegro, Oct. 1–5, 2018 (DEStech Publ., Lancaster, PA, 2018), pp. 273–285.

[7] B. Fuchs, Application of convex relaxation to array synthesis problems, IEEE Trans. Antennas Propag. 62 (2), 634–640 (2014).

[8] A. Akdagli and K. Guney, Shaped-beam pattern synthesis of equally and unequally spaced linear antenna arrays using a modified tabu search algorithm, Microw. Opt. Technol. Lett. 36 (1), 16–20 (2003).

[9] A. V. Boriskin, M. V. Balaban, O. Yu. Galan, and R. Sauleau, Efficient approach for fast synthesis of phased arrays with the aid of a hybrid genetic algorithm and a smart feed representation, in Proc. 2010 IEEE Int. Symp. Phased Array Systems and Technology, Waltham, MA, USA, Oct. 12–15, 2010 (IEEE, Piscataway, 2010), pp. 827–832.

[10] A. Akdagli and K. Guney, Parallel genetic-algorithm optimization of shaped beam coverage areas using planar 2-$D$ phased arrays, IEEE Trans. Antennas Propag. 55 (6), 1745–1753 (2007).

[11] A. S. Yurkov, Optimization of Excitation of Transmitting Phased Antenna Arrays of Decameter Wavelength Range (ONIIP, Omsk, 2014) [Russian].

[12] A. S. Yurkov, Maximizing the directivity of shortwave phased array antennas, Tech. Radiosvyazi, No. 2, 46–53 (2016) [Russian].

[13] V. A. Obukhovets, Antenna array iterative synthesis algorithm, in Proc. 2017 Radiation and Scattering of Electromagnetic Waves, Divnomorskoe, Krasnodar Reg., Russia, June 26–30, 2017 (IEEE, Piscataway, 2017), pp. 58–60.

[14] J. I. Echeveste, M. G. de Aza, and J. Zapata, Shaped beam synthesis of real antenna arrays via finite-element method, floquet modal analysis, and convex programming, IEEE Trans. Antennas Propag. 64 (4), 1279–1286 (2016).

[15] K. Murty, Some NP-complete problems in quadratic and nonlinear programming, Math. Program. 39, 117–129 (1987).

[16] Yu. E. Nesterov, Introduction to Convex Optimization (MTsNMO, Moscow, 2010) [Russian].

[17] H. S. Ryoo and N. V. Sahinidis, Global optimization of nonconvex NLPs and MINLPs with applications in process design, Comput. Chem. Eng. 19 (5), 551–566 (1995).

[18] A. V. Eremeev and K. R. Rives, Confidence intervals for the number of local optima, Mat. Strukt. Model., No. 41, 55–74 (2017) [Russian].

[19] A. S. Yurkov, On the influence of losses in the ground on the operation of the four-element PAA HF range, Tech. Radiosvyazi, No. 1, 78–81 (2014) [Russian].

[20] J. J. Burke and A. J. Poggio, Numerical Electromagnics Code (Lawrence Livermore Nat. Lab., Livermore, CA, 1981). Available at https://www.nec2.org (accessed March 11, 2021).

[21] R. Horst and H. Tuy, Global Optimization: Deterministic Approaches (Springer, Heidelberg, 1996).

[22] M. Tawarmalani and N. V. Sahinidis, Global optimization of mixed-integer nonlinear programs: A theoretical and computational study, Math. Program. 99 (3), 563–591 (2004).

[23] Handbook of Global Optimization (Kluwer Acad. Publ., Dordrecht, 1995) (Nonconvex Optim. Its Appl., Vol. 2).

[24] A. S. Strekalovsky, Global optimality conditions in nonconvex optimization, J. Optim. Theory Appl. 173 (3), 770–792 (2017).

[25] D. M. Himmelblau, Applied Nonlinear Programming (McGraw-Hill, New York, 1972).

[26] J. Kennedy and R. Eberhart, Particle swarm optimization, in Proc. Int. Conf. Neural Networks, Perth, Australia, Nov. 27–Dec. 1, 1995, Vol. 4 (IEEE, Piscataway, 1995), pp. 1942–1948.

[27] R. Storn and K. Price, Differential evolution — a simple and efficient heuristic for global optimization over continuous spaces, J. Global Optim. 11 (4), 341–359 (1997).

[28] R. A. Horn and C. R. Johnson, Matrix Analysis (Camb. Univ. Press, New York, 1990).

[29] V. V. Eryomin and N. N. Astafiev, Introduction to the Theory of Linear and Convex Programming (Nauka, Moscow, 1976) [Russian].

[30] M. Aoki, Introduction to Optimization Techniques: Fundamentals and Applications of Nonlinear Programming (Macmillan, New York, 1971).

[31] M. Tawarmalani and N. V. Sahinidis, Global optimization of mixed-integer nonlinear programs: A theoretical and computational study, Math. Program. 99 (3), 563–591 (2004).

[32] A. V. Eremeev and A. S. Yurkov, On symmetry groups of some quadratic programming problems, in Mathematical Optimization Theory and Operations Research (Proc. 19th Int. Conf. MOTOR 2020, Novosibirsk, Russia, July 6–10, 2020) (Springer, Cham, 2020), pp. 35–48 (Lect. Notes Comput. Sci., Vol. 12095).
 © Sobolev Institute of Mathematics, 2015