EN|RU
|
![]() |
Volume 28, No 3, 2021, P. 49-64 UDC 519.8+518.25
Keywords: boolean function, bent function, nonlinearity, balancedness, spectral radius. DOI: 10.33048/daio.2021.28.705 Ivan A. Sutormin 1 Received December 1, 2020 References[1] M. Matsui, Linear cryptanalysis method for DES cipher, in Advances in Cryptology — EUROCRYPT’93 (Proc. Workshop Theory Appl. Cryptogr. Techniques, Lofthus, Norway, May 23–27, 1993) (Springer, Heidelberg, 1994), pp. 386–397 (Lect. Notes Comput. Sci., Vol. 765).[2] O. Rothaus, On «bent» functions, J. Comb. Theory, Ser. A, 20 (3), 300–305 (1976). [3] N. N. Tokareva, Bent Functions: Results and Applications to Cryptography (Acad. Press, Amsterdam, 2015). [4] S. Mesnager, Binary Bent Functions: Fundamentals and Results (Springer, Heidelberg, 2016). [5] C. Carlet, Boolean functions for cryptography and error-correcting codes, in Boolean Models and Methods in Mathematics, Computer Science, and Engineering (Camb. Univ. Press, New York, 2010), [6] T. Cusick and P. Stanica, Cryptographic Boolean Functions and Applications (Acad. Press, Amsterdam, 2009). [7] O. A. Logachyov, A. A. Sal’nikov, S. V. Smyshlyaev, and V. V. Yashchenko, Boolean Functions in Coding Theory and Cryptology (MTsNMO, Moscow, 2012) [Russian]. [8] K. Schmidt, Asymptotically optimal Boolean functions, J. Comb. Theory, Ser. A, 164, 50–59 (2019). [9] J. Seberry, X. Zhang, and Y. Zheng, Nonlinearly balanced Boolean functions and their propagation characteristics, in Advances in Cryptology — Crypto’93 (Proc. 13th Annu. Int. Cryptology Conf., Santa Barbara, CA, USA, Aug. 22–26, 1993) (Springer, Heidelberg, 1994), pp. 49–60 (Lect. Notes Comput. Sci., Vol. 773). [10] C. Carlet, On bent and highly nonlinear balanced/resilient functions and their algebraic immunities, in Applied Algebra, Algebraic Algorithms and Error- Correcting Codes (Proc. 16th Int. Symp., Las Vegas, NV, USA, Feb. 20–24, 2006) (Springer, Heidelberg, 2006), pp. 1–28 (Lect. Notes Comput. Sci., Vol. 3857). [11] Q. Wang and C. H. Tan, Properties of a family of cryptographic Boolean functions, in Sequences and Their Applications — SETA 2014 (Proc. 8th Int. Conf., Melbourne, Australia, Nov. 24–28, 2014) (Springer, Cham, 2014), pp. 34–46 (Lect. Notes Comput. Sci., Vol. 8865). [12] D. Tang and S. Maitra, Construction of $n$-variable ($n \equiv 2$ mod 4) balanced Boolean functions with maximum absolute value in autocorrelation spectra $< 2^{\frac{n}{2}}$, IEEE Trans. Inf. Theory 64 (1), 393–402 (2018). [13] S. Kavut, S. Maitra, and D. Tang, Construction and search of balanced Boolean functions on even number of variables towards excellent autocorrelation profile, Des. Codes Cryptogr. 87 (3), 261–276 (2019). [14] N. J. Patterson andD. H. Wiedemann, The covering radius of the (215, 16) Reed–Muller code is at least 16276, IEEE Trans. Inf. Theory 29 (3), 354–356 (1983). [15] H. Dobbertin, Construction of bent functions and balanced Boolean functions with high nonlinearity, in Fast Software Encryption (Proc. 2nd Int. Workshop, Leuven, Belgium, Dec. 14–16, 1994) (Springer, Heidelberg, 1995), pp. 61–74 (Lect. Notes Comput. Sci., Vol. 1008). [16] D. Fomin, New classes of 8-bit permutations based on a butterfly structure, Math. Asp. Cryptogr. 10 (2), 169–180 (2019). [17] N. Kolomeec, The graph of minimal distances of bent functions and its properties, Des. Codes Cryptogr. 85 (3), 395–410 (2017). [18] N. Kolomeec, On properties of a bent function secondary construction, Abs. 5th Int. Workshop Boolean Functions and Their Applications, Loen, Norway, Sept. 15–17, 2020, pp. 23–26. Available at http://boolean.w.uib.no/files/2020/09/BFA_2020_abstracts_numbered.pdf (accessed Apr. 28, 2021). [19] C. Carlet, Two new classes of bent functions, in Advances in Cryptology — EUROCRYPT’93 (Proc. Workshop Theory Appl. Cryptogr. Techniques, Lofthus, Norway,May 23–27, 1993) (Springer, Heidelberg, 1994), pp. 77–101 (Lect. Notes Comput. Sci., Vol. 765). [20] V. V. Yashchenko, On the propagation criterion for Boolean functions and on bent functions, Probl. Peredachi Inf. 33 (1), 62–71 (1997) [Russian] [Probl. Inf. Transm. 33 (1), 75–86 (1997)]. |
|
![]() |
|
© Sobolev Institute of Mathematics, 2015 | |
![]() |
|