EN|RU

Volume 29, No 2, 2022, P. 62-79

UDC 519.8+518.25
S. A. Novoselov and Yu. F. Boltnev
On the number of points on the curve $y^2 = x^7 + ax^4 + bx$ over a finite field

Abstract:
We provide explicit formulae for the number of points on a genus $3$ hyperelliptic curve of type $y^2 = x^7 + ax^3 + bx$ over a finite field $\mathbb {F}_q$ of characteristic $p > 3$. As an application of these formulae, we prove that point-counting problem on this type of curves has heuristic time complexity of order $O(log^{4} q)$ bit operations.
Tab. 2, bibliogr. 27.

Keywords: hyperelliptic curve, point-counting, characteristic polynomial.

DOI: 10.33048/daio.2022.29.726

Semyon A. Novoselov1
Yurii F. Boltnev1

1. Immanuel Kant Baltic Federal University,
14 Aleksandr Nevskii Street, 236041 Kaliningrad, Russia
e-mail: snovoselov@kantiana.ru, yuri.boltnev@gmail.com

Received October 31, 2021
Revised January 31, 2022
Accepted February 7, 2022

References

[1] Information technology. Cryptographic data security. Signature and verification processes of electronic digital signature, GOST 34.10-2018 (Standartinform, Moscow, 2018) [Russian].

[2] Digital signature standard (DSS), FIPS 186-4 (NIST, Gaithersburg, MD, 2013).
Available at https://doi.org/10.6028/NIST.FIPS.186-4 (accessed Mar. 9, 2022).

[3] N. Koblitz, Hyperelliptic cryptosystems, J. Cryptol. 1 (3), 139–150 (1989).

[4] Handbook of Elliptic and Hyperelliptic Curve Cryptography (Chapman Hall/ CRC, Boca Raton, FL, 2006).

[5] R. Schoof, Counting points on elliptic curves over finite fields, J. Théor. Nombres Bordx. 7 (1), 219–254 (1995).

[6] S. Abelard, P. Gaudry, and P. J. Spaenlehauer, Improved complexity bounds for counting points on hyperelliptic curves, Found. Comput. Math. 19 (3), 591–621 (2019).

[7] P. Gaudry and É. Schost, Genus 2 point counting over prime fields, J. Symb. Comput. 47 (4), 368–400 (2012).

[8] S. Abelard, Counting points on hyperelliptic curves in large characteristic: Algorithms and complexity, PhD Thesis (Univ. Lorraine, Nancy, 2018).

[9] S. Dobson, S. Galbraith, and S. Benjamin, Trustless unknown-order groups, J. Math. Cryptol. [in print].

[10] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch, Verifiable delay functions, in Advances in Cryptology – CRYPTO 2018 (Proc. 38th Annu. Int. Cryptol. Conf., Santa Barbara, CA, USA, Aug. 19–23, 2018), Pt. I (Springer, Cham, 2018), pp. 757–788 (Lect. Notes Comput. Sci., Vol. 10991).

[11] R. L. Rivest, A. Shamir, and D. A. Wagner, Time-lock puzzles and timedrelease crypto. Tech. Rep. MIT-LCS-TR-684 (MIT, Cambridge, MA, 1996).

[12] J. Benaloh and M. de Mare, One-way accumulators: A decentralized alternative to digital signatures, in Advances in Cryptology – EUROCRYPT’93 (Proc. Workshop Theory Appl. Cryptogr. Tech., Lofthus, Norway, May 23–27, 1993) (Springer, Heidelberg, 1994), pp. 274–285 (Lect. Notes Comput. Sci., Vol. 765).

[13] T. Satoh, Generating genus two hyperelliptic curves over large characteristic finite fields, in Advances in Cryptology – EUROCRYPT 2009 (Proc. 28th Annu. Int. Conf. Theory Appl. Cryptogr. Tech., Cologne, Germany, Apr. 26–30, 2009) (Springer, Heidelberg, 2009), pp. 536–553 (Lect. Notes Comput. Sci., Vol. 5479).

[14] A. Guillevic and D. Vergnaud, Genus 2 hyperelliptic curve families with explicit Jacobian order evaluation and pairing-friendly constructions, in PairingBased Cryptography – Pairing 2012 (Rev. Sel. Pap. 5th Int. Conf., Cologne, Germany, May 16–18, 2012) (Springer, Heidelberg, 2013), pp. 234–253 (Lect. Notes Comput. Sci., Vol. 7708).

[15] S. A. Novoselov, Counting points on hyperelliptic curves of type $y^2 = x^{2g+1} + ax^{g+1} + bx$, Finite Fields Appl. 68, ID 101757, 27 p. (2020).

[16] D. Mumford, Abelian Varieties (Oxford Univ. Press, Oxford, 1974).

[17] J. Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (2), 134–144 (1966).

[18] I. B. Chacon, R. Chapman, S. Fordham, and G. McGuire, Divisibility of $L$-polynomials for a family of curves, in Contemporary Developments in Finite Fields and Applications (World Sci., Singapore, 2016), pp. 1–10.

[19] V. Singh, G. McGuire, and A. Zaytsev, Classification of characteristic polynomials of simple supersingular abelian varieties over finite fields, Funct. Approximatio, Comment. Math. 51 (2), 415–436 (2014).

[20] K. M. J. Chou and E. Kani, Simple geometrically split abelian surfaces over finite fields, J. Ramanujan Math. Soc. 29 (1), 31–62 (2014).

[21] H. Stichtenoth, Algebraic Function Fields and Codes (Springer, Heidelberg, 2009) (Grad. Texts Math., Vol. 254). 22. H. Cohen, A Course in Computational Algebraic Number Theory (Springer, Heidelberg, 1993) (Grad. Texts Math., Vol. 138).

[23] W. Stein, SageMath (2021). Available at https://www.sagemath.org (accessed Mar. 11, 2022).

[24] D. Harvey, Kedlaya’s algorithm in larger characteristic, Int. Math. Res. Not. 2007 (22), ID rnm095, 29 p. (2007).

[25] D. Harvey, Hypellfrob (2008).
Available at https://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob (accessed Mar. 11, 2022).

[26] S. A. Novoselov and Yu. F. Boltnev, Characteristic polynomials of the curve $y^2 = x^7 + ax^4 + bx$ over finite fields, Prikl. Diskretn. Mat., Prilozh., No. 12, 44–46 (2019).

[27] S. A. Novoselov, Counting points on hyperelliptic curves with geometrically split Jacobians [poster], in 14th Algorithmic Number Theory Symp., Auckland, New Zealand, June 29–July 4, 2020 (Univ. Auckland, Auckland, 2020). Available at https://www.math.auckland.ac.nz/~sgal018/ANTS/posters/ Novoselov.pdf (accessed Mar. 11, 2022).
 © Sobolev Institute of Mathematics, 2015