EN|RU

Volume 29, No 3, 2022, P. 64-84

UDC 519.863
E. A. Nurminskiy and N. B. Shamray
Modeling and optimizing large-scale production-level transportation systems

Abstract:
Large-scale economic modeling is becoming a reality for major businesses and it pushes their analytic and planning departments into very complicated areas of big data analytics and control. At the same time, it demands research communities in academia and else to develop adequate tools to operate models with millions of variables and gigabytes of data, where traditional off-the-shelf solutions fail. In this paper, we describe our experience with one rather common high-dimensional logistic problem and some of the mathematical and computational ideas we pursue to deal with it.
Tab. 3, bibliogr. 21.

Keywords: large-scale economic modeling, production-level transport expedition system, linear optimization, projection algorithm.

DOI: 10.33048/daio.2022.29.736

Evgeny A. Nurminskiy 1
Natalia B. Shamray 2

1. Far Eastern State University,
10 Ayaks Bay, 690922 Vladivostok, Russia
2. Institute of Automation and Control Processes FEB RAS,
5 Radio Street, 690041 Vladivostok, Russia
e-mail: nurminskiy.ea@dvfu.ru, shamray@dvo.ru

Received May 2, 2022
Revised May 2, 2022
Accepted May 5, 2022

References

[1] Gurobi Optimizer Reference Manual (Gurobi Optimization, Beaverton, 2021).
Available at www.gurobi.com/documentation/9.5/refman/index.html (accessed Feb. 27, 2022).

[2] IBM ILOG CPLEX Optimizer (IBM, Armonk, 2022).
Available at www.ibm.com/analytics/cplex-optimizer (accessed Feb. 27, 2022).

[3] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’ Guide (SIAM, Philadelphia, 1999).

[4] SuiteSparse: A Suite of SparseMatrix Software (Texas A&MUniv., College Station, 2022).
Available at people.engr.tamu.edu/davis/suitesparse.html (accessed Feb. 27, 2022).

[5] G. B. Dantzig and Ph. Wolfe, The decomposition algorithm for linear programming, Econometrica 9 (4), 767–778 (1961).

[6] AMPL Homepage (AMPL Optimization, Mountain View, CA, 2022).
Available at ampl.com (accessed Feb. 27, 2022).

[7] R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL: A Modeling Language for Mathematical Programming (Cengage Learning, Boston, 2003).

[8] GAMS — A User’s Guide (GAMS Software, Frechen, 2022).
Available at www.gams.com/35/docs/UG_MAIN.html (accessed Feb. 27, 2022).

[9] GLPK (GNU Linear Programming Kit) (Free Software Found., Boston, MA, 2012).
Available at www.gnu.org/software/glpk/ (accessed Feb. 27, 2022).

[10] NEOS Server (Univ. Wisconsin, Madison, WI, 2022).
Available at neos-server.org/neos/ (accessed Feb. 27, 2022).

[11] G. Kahan, Walking through a columnar approach to linear programming of a business, Interfaces 12 (3), 32–39 (1982).

[12] E. A. Nurminski, Single-projection procedure for linear optimization, J. Glob. Optim. 66 (1), 95–110 (2016).

[13] A. J. Goldman and A. W. Tucker, Theory of Linear Programming, Linear Inequalities and Related Systems. Vol. 38 (Princeton Univ. Press, Princeton, NJ, 1956). P. 53–97.

[14] J. von Neumann, On rings of operators. Reduction theory, Ann. Math. 50 (2), 401–485 (1949).

[15] H. H. Bauschke and J. M. Borwein, On the convergence of von Neumann’s alternating projection algorithm for two sets, Set-Valued Anal. 1, 185–212 (1993).

[16] R. Escalante and M. Raydan, Alternating Projection Methods (SIAM, Philadelphia, 2011).

[17] C. Michelot, A finite algorithm for finding the projection of a point onto the canonical simplex of En, J. Optim. Theory Appl. 50 (1), 195–200 (1986).

[18] V. N. Malozemov and G. Sh. Tamasyan, Two fast algorithms for projecting a point onto the canonical simplex, Zh. Vychisl. Mat. Mat. Fiz. 56 (5), 742–755 (2016) [Russian] [Comput. Math. Math. Phys. 56 (5), 730–743 (2016)].

[19] E. A. Nurminski, Projection onto polyhedra in outer representation, Zh. Vychisl. Mat. Mat. Fiz. 48 (3), 387–396 (2008) [Russian] [Comput. Math. Math. Phys. 48 (3), 367–375 (2008)].

[20] E. Nurminski and N. Shamray, Row-oriented decomposition in large-scale linear optimization, in Optimization and Applications (Proc. Int. Conf. OPTIMA 2021, Petrovac, Montenegro, Sep. 27–Oct. 1, 2021) (Springer, Heidelberg, 2021), pp. 50–63 (Lect. Notes Comput. Sci., Vol. 13078).

[21] H. J. Greenberg, J. R. Lundgren, and J. S. Maybee, Graph theoretic methods for the qualitative analysis of rectangular matrices, SIAM J. Algebraic Discrete Methods 2 (3), 227–239 (1981).

 © Sobolev Institute of Mathematics, 2015