EN|RU
|
![]() |
Volume 30, No 1, 2023, P. 110-129 UDC 519.17
Keywords: extremal combinatorics, tree, 2-caterpillar,minimum total dominating set. DOI: 10.33048/daio.2023.30.745 Dmitrii S. Taletskii 1,2 Received June 16, 2022 References[1] D. Bród and Z. Skupien, Trees with extremal numbers of dominating sets, Australas. J. Comb. 35, 273–290 (2006).[2] M. Krzywkowski and S. Wagner, Graphs with few total dominating sets, Discrete Math. 341 (4), 997–1009 (2018). [3] A. Bien, Properties of gamma graphs of trees, Colourings, Independence and Domination (Abs. 17th Workshop Graph Theory, Piechowice, Poland, Sept. 17–22, 2017) (Univ. Zielona Góra, Zielona Góra, 2017). Available at www.cid.uz.zgora.pl/php/pdf_file.php?vid=1046 (accessed Jan. 13, 2023). [4] J. Alvarado, S. Dantas, E. Mohr, and D. Rautenbach, On the maximum number of minimum dominating sets in forests, Discrete Math. 342 (4), 934–942 (2018). [5] D. S. Taletskii, Trees with extremal numbers of $k$-dominating sets, Discrete Math. 345 (1), ID 112656, 5 p. (2022). [6] G. Rote, Minimal dominating sets in a tree: Counting, enumeration, and extremal results (Cornell Univ., Ithaca, NY, 2019) (Cornell Univ. Libr. e-Print Archive, arXiv:1903.04517). [7] M. A. Henning, E. Mohr, and D. Rautenbach, On the maximum number of minimum total dominating sets in forests, Discrete Math. Theor. Comput. Sci. 21 (3), ID 3, 12 p. (2019). |
|
![]() |
|
© Sobolev Institute of Mathematics, 2015 | |
![]() |
|