EN|RU
English version: Journal of Applied and Industrial Mathematics, 2020, 14:3, 480-489 |
![]() |
Volume 27, No 3, 2020, P. 71-87 UDC 519.17
Keywords: weighted vertex coloring problem, hereditary class, computational complexity. DOI: 10.33048/daio.2020.27.668 Dmitry V. Gribanov 1,2 Received July 25, 2019 References[1] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979; Mir, Moscow, 1982 [Russian]).[2] D. Král, J. Kratochvíl, Z. Tuza, and G. Woeginger, Complexity of coloring graphs without forbidden induced subgraphs, in Graph-Theoretic Concepts in Computer Science (Proc. 27th Int. Workshop, Boltenhagen, Germany, June 14–16, 2001) (Springer, Heidelberg, 2001), pp. 254–262 (Lect. Notes Comput. Sci., Vol. 2204) [3] V. V. Lozin and D. S. Malyshev, Vertex coloring of graphs with few obstructions, Discrete Appl. Math. 216, 273–280 (2017). [4] D. S. Malyshev, Polynomial-time approximation algorithms for the coloring problem in some cases, J. Comb. Optim. 33 (3), 809–813 (2017). [5] K. Dabrowski, P. A. Golovach, and D. Paulusma, Colouring of graphs with Ramsey-type forbidden subgraphs, Theor. Comput. Sci. 522, 34–43 (2014). [6] K. Dabrowski, V. V. Lozin, R. Raman, and B. Ries, Colouring vertices of triangle-free graphs without forests, Discrete Math. 312, 1372–1385 (2012). [7] P. A. Golovach, M. Johnson, D. Paulusma, and J. Song, A survey on the computational complexity of coloring graphs with forbidden subgraphs, J. Graph Theory 84, 331–363 (2017). [8] P. A. Golovach, D. Paulusma, and B. Ries, Coloring graphs characterized by a forbidden subgraph, Discrete Appl. Math. 180, 101–110 (2015). [9] C. Hoàng and D. Lazzarato, Polynomial-time algorithms for minimum weighted colorings of ($P_5$, $\bar{P}5$)-free graphs and similar graph classes, Discrete Appl. Math. 186, 105–111 (2015). [10] T. Karthick, F. Maffray, and L. Pastor, Polynomial cases for the vertex coloring problem, Algorithmica 81 (3), 1053–1074 (2017). [11] D. S. Malyshev, The coloring problem for classes with two small obstructions, Optim. Lett. 8 (8), 2261–2702 (2014). [12] D. S. Malyshev, Two cases of polynomial-time solvability for the coloring problem, J. Comb. Optim. 31 (2), 833–845 (2015). [13] D. S. Malyshev, The weighted coloring problem for two graph classes characterized by small forbidden induced structures, Discrete Appl. Math. 247, 423–432 (2018). [14] D. S. Malyshev and O. O. Lobanova, Two complexity results for the vertex coloring problem, Discrete Appl. Math. 219, 158–166 (2017). [15] A. Cournier and M. Habib, A new linear algorithm for modular decomposition, in Trees in Algebra and Programming – CAAP’94 (Proc. 19th Int. Colloq., Edinburgh, UK, Apr. 11–13, 1994) (Springer, Heidelberg, 1994), pp. 68–84 (Lect. Notes Comput. Sci., Vol. 787). [16] R. E. Tarjan, Decomposition by clique separators, Discrete Math. 55 (2), 221–232 (1985). [17] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas, The strong perfect graph theorem, Ann. Math. 164, 51–229 (2006). [18] M. Grötschel, L. Lovász, and A. Schrijver, Polynomial algorithms for perfect graphs, Ann. Discrete Math. 21, 325–356 (1984). |
|
![]() |
|
© Sobolev Institute of Mathematics, 2015 | |
![]() |
|