EN|RU
English version: Journal of Applied and Industrial Mathematics, 2020, 14:3, 416-429 |
![]() |
Volume 27, No 3, 2020, P. 5-27 UDC 519.8+518.25
Keywords: “defender–attacker” problem, total deficit, cut generation. DOI: 10.33048/daio.2020.27.687 Vladimir L. Beresnev 1,2 Received May 9, 2020 References[1] M. Grötschel, C. L. Monma, and M. Stoer, Design of survivable networks, Handb. Oper. Res. Manage. Sci. 7, 617–672 (1995).[2] D. S. Callaway, M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Network robustness and fragility: Percolation on random graphs, Phys. Rev. Lett. 85, 5468–5471 (2000). [3] A. Nagurney and Q. Qiang, Fragile networks: Identifying vulnerabilities and synergies in an uncertain world, Int. Trans. Oper. Res. 19 (1–2), 123–160 (2009). [4] G. Brown, M. Carlyle, J. Salmerón, and K. Wood, Defending critical infrastructure, Interfaces 36 (6), 530–544 (2006). [5] M. P. Scaparra and R. L. Church, A bilevel mixed-integer program for critical infrastructure protection planning, Comput. Oper. Res. 35, 1905–1923 (2008). [6] B. Golden, A problem in network interdiction, Naval Res. Logist. Q. 25 (4), 711–713 (1978). [7] R. K. Wood, Deterministic network interdiction, Math. Comput. Model. 17 (2), 1–18 (1993). [8] S. Sadeghi, A. Seifi, and E. Azizi, Trilevel shortest path network interdiction with partial fortification, Comput. Ind. Eng. 106, 400–411 (2017). [9] L. Dong, L. Xu-chen, Y. Xiang-tao, and W. Fei, A model for allocating protection resources in military logistics distribution system based on maximal covering problem, in 2010 Int. Conf. Logist. Syst. Intell. Manage., Harbin, China, Jan. 9–10, 2010, Vol. 1 (IEEE, Piscataway, 2010), pp. 98–101. [10] E. V. Alekseeva and Yu. A. Kochetov, Metaheuristics and exact methods for the discrete ($r|p$)–centroid problem, in Metaheuristics for bi-level optimization (Springer, Berlin, 2013), pp. 189–219 (Stud. Comput. Intell., Vol. 482). [11] M. C. Roboredo, L. Aizemberg, and A. A. Pessoa, An exact approach for the $r$-interdiction covering problem with fortification, Cent. Eur. J. Oper. Res. 27, 111–131 (2019). [12] M. C. Roboredo and A. A. Pessoa, A branch-and-cut algorithm for the discrete ($r|p$)-centroid problem, Eur. J. Oper. Res. 224 (1), 101–109 (2013). [13] Gurobi optimizer reference manual (Gurobi Optimization, 2020). Available at http://www.gurobi.com/documentation/9.0/refman/index.html (accessed May 25, 2020). |
|
![]() |
|
© Sobolev Institute of Mathematics, 2015 | |
![]() |
|