EN|RU

Volume 29, No 4, 2022, P. 15-37

UDC 519.8+518.25
E. N. Goncharov
Local search algorithm for the resource-constrained project scheduling problem

Abstract:
We consider the resource-constrained project scheduling problem (RCPSP). The problem accounts for technological constraints of activities precedence together with resource constraints. All resources are renewable. Activities preemptions are not allowed. This problem is NP-hard in the strong sense. We present a new local search algorithm that uses a Tabu-list and two type of neighborhoods. The algorithm is evaluated using three data bases of instances of the problem: 480 instances of 60 activities, 480 of 90, and 600 of 120 activities respectively, taken from the PSPLIB library available online. Numerical experiments demonstrate that the proposed algorithm produces better results than existing algorithms in the literature for large-sized instances. For some instances from the dataset j120, the best known heuristic solutions were improved.
Tab. 4, bibliogr. 47.

Keywords: resource-constrained project scheduling problem, renewable resources, Tabu search, variable neighborhood search, PSPLIB.

DOI: 10.33048/daio.2022.29.734

Evgeny N. Goncharov 1,2
1. Sobolev Institute of Mathematics,
4 Koptyug Ave., 630090 Novosibirsk, Russia
2. Novosibirsk State University,
2 Pirogov St., 630090 Novosibirsk, Russia
e-mail: gon@math.nsc.ru

Received April 21, 2022
Revised May 25, 2022
Accepted May 26, 2022

References

[1] P. Brucker, A. Drexl, R. Möhring, K. Neumann, and E. Pesch, Resource-constrained project scheduling: Notation, classification, models, and methods, Eur. J. Oper. Res. 112 (1), 3–41 (1999).

[2] J. Blazewicz, J. K. Lenstra, and A. H. G. Rinnoy Kan, Scheduling subject to resource constraints: Classification and complexity, Discrete Appl. Math. 5 (1), 11–24 (1983).

[3] É. Kh. Gimadi, On some mathematical models and methods for planning large-scale projects, in Models and Optimization Methods (Tr. Inst. Mat., Vol. 10) (Nauka, Novosibirsk, 1988), pp. 89–115.

[4] É. Kh. Gimadi, V. V. Zalyubovskii, and S. V. Sevastyanov, Polynomial solvability of scheduling problems with storable resources and deadlines, Diskretn. Anal. Issled. Oper., Ser. 2, 7 (1), 9–34 (2000).

[5] R. Pellerin, N. Perrier, and F. Berthaut, LSSPER: A survey of hybrid metaheuristics for the resource-constrained project scheduling problem, Eur. J. Oper. Res. 280 (2), 395–416 (2020).

[6] M. Abdolshah, A review of resource-constrained project scheduling problems (RCPSP) approaches and solutions, Int. Trans. J. Eng. Manage. Appl. Sci. Technol. 5 (4), 253–286 (2014).

[7] M. Vanhoucke, Resource-constrained project scheduling, in Project Management with Dynamic Scheduling (Springer, Heidelberg, 2012), pp. 107–137.


[8] S. Hartmann and D. Briskorn, A survey of variants and extensions of the resource-constrained project scheduling problem, Eur. J. Oper. Res. 207 (1), 1–14 (2010).

[9] R. Kolisch and S. Hartmann, Experimental investigation of heuristics for resource-constrained project scheduling: An update, Eur. J. Oper. Res. 174 (1), 23–37 (2006).

[10] M. Palpant, C. Artigues, and P. Michelon, Solving the resource-constrained project scheduling problem with large neighborhood search, Ann. Oper. Res. 131, 237–257 (2004).

[11] Yu. A. Kochetov and A. A. Stolyar, Evolutionary local search with variable neighborhood for the resource constrained project scheduling problem, in Proc. 5th Int. Workshop Comput. Sci. Inf. Technol., Ufa, Russia, Sept. 16–18 (USATU, Ufa, 2003), pp. 96–99.

[12] E. N. Goncharov, Variable neighborhood search for the resource constrained project scheduling problem, in Mathematical Optimization Theory and Operations Research (Rev. Sel. Pap. 18th Int. Conf., Yekaterinburg, Russia, July 8–12, 2019) (Springer, Cham, 2021), pp. 39–50 (Commun. Comput. Inf.
Sci., Vol. 1090).

[13] R. Kolisch and S. Hartmann, Heuristic algorithms for solving the resourceconstrained project scheduling problem: Classification and computational analysis, in Project Scheduling: Recent Models, Algorithms and Applications (Kluwer Acad. Publ., Boston, 1999), pp. 147–178.

[14] E. Kh. Gimadi, E. N. Goncharov, and D. V. Mishin, On some implementations of solving the resource-constrained project scheduling problem, Yugoslav. J. Oper. Res. 29 (1), 31–42 (2019).

[15] M. Gagnon, F. F. Boctor, and G. d’Avignon, A tabu search algorithm for the resource-constrained project scheduling problem, in Proc. 2004 Conf. Adm. Sci. Assoc. Canada, Quebec, Canada, June 5–8, 2004 (ASAC,Waterloo, 2004).

[16] S. Proon and M. Jin, A genetic algorithm with neighborhood search for the resource-constrained project scheduling problem, Naval Res. Logist. 58, 73–82 (2011).

[17] V. Valls, F. Ballestin, and S. Quintanilla, A population-based approach to the resource-constrained project scheduling problem, Ann. Oper. Res. 131, 305–324 (2004).

[18] R. Kolisch and A. Sprecher, PSPLIB — a Project Scheduling Problem Library, Eur. J. Oper. Res. 96 (1), 205–216 (1996).

[19] Project Scheduling: Recent Models, Algorithms and Applications (Kluwer Acad. Publ., Boston, 1999).

[20] R. Kolisch, A. Sprecher, and A. Drexl, Characterization and generation of a general class of resource-constrained project scheduling problems, Manage. Sci. 41 (10), 1693–1703 (1995).

[21] E. N. Goncharov and V. V. Leonov, Genetic algorithm for the resourceconstrained project scheduling problem Avtom. Telemekh., No. 6, 173–189 (2017) [Russian] [Autom. Remote Control. 78 (6), 1101–1114 (2017)].

[22] F. Berthaut, R. Pellerin, A. Hajji, and N. Perrier, A path relinkingbased scatter search for the resource-constrained project scheduling problem, Int. J. Proj. Organ. Manage. 10 (1), 1–36 (2018).

[23] D. C. Paraskevopoulos, C. D. Tarantilis, and G. Ioannou, Solving project scheduling problems with resource constraints via an event list-based evolutionary algorithm, Expert Syst. Appl. 39 (4), 3983–3994 (2012).

[24] M. Mobini, Z. Mobini, and M. Rabbani, An artificial immune algorithm for the project scheduling problem under resource constraints, Appl. Soft Comput. 11 (2), 1975–1982 (2011).

[25] M. D. Mahdi Mobini, M. Rabbani, M. S. Amalnik, J. Razmi, and A. R. Rahimi-Vahed, Using an enhanced scatter search algorithm for a resource-constrained project scheduling problem, Soft Comput. 13, 597–610 (2009).

[26] H. Wang, T. Li, and T. Lin, Efficient genetic algorithm for resource-constrained project scheduling problem, Trans. Tianjin Univ. 16 (5), 376–382 (2010).

[27] J. Goncalves, M. G. Resende, C, and J. Mendes, A biased random key genetic algorithm with forward-backward improvement for resource-constrained project scheduling problem, J. Heuristics 17, 467–486 (2011).

[28] S. Elsayed, R. Sarker, T. Ray, and C. C. Coello, Consolidated optimization algorithm for resource-constrained project scheduling problems, Inf. Sci. 418–419, 346–362 (2017).

[29] J. Czogalla and A. Fink, Particle swarm topologies for resource constrained project scheduling, in Nature Inspired Cooperative Strategies for Optimization (NICSO 2008) (Springer, Heidelberg, 2009), pp. 61–73.

[30] A. Lim, H. Ma, B. Rodrigues, S. T. Tan, and F. Xiao, New metaheuristics for the resource-constrained project scheduling problem, Flex. Services Manuf. J. 25 (1–2), 48–73 (2013).

[31] D. Chen, S. Liu, and S. Qin, Memetic algorithm for the resource-constrained project scheduling problem, in Proc. 11th World Congr. Intell. Control Autom. (WCICA 2014), Shenyang, China, June 27–30, 2014 (IEEE, Piscataway, 2014), pp. 4991–4996.

[32] X. Zheng and L. Wang, A multi-agent optimization algorithm for resource constrained project scheduling problem, Expert Syst. Appl. 42 (15–16), 6039–6049 (2015).

[33] R. Zamani, A competitive magnet-based genetic algorithm for solving the resource-constrained project scheduling problem, Eur. J. Oper. Res. 229 (2), 552–559 (2013).

[34] X. Zheng and L. Wang, An effective shuffled frog-leaping algorithm for resource-constrained project scheduling problem, Comput. Oper. Res. 39 (5), 890–901 (2012).

[35] I. Y. Ismail and M. A. Barghash, Diversity guided genetic algorithm to solve the resource constrained project scheduling problem, Int. J. Plan. Sched. 1 (3), 147–170 (2012).

[36] W. Chen, Y. Shi, H. Teng, X. Lan, and L. Hu, An efficient hybrid algorithm for resource-constrained project scheduling, Inf. Sci. 180 (6), 1031–1039 (2010).

[37] J. J. M. Mendes, J. F. Goncalves, andM. G. C. Resende, A random key based genetic algorithm for the resource-constrained project scheduling problem, Comput. Oper. Res. 36, 92–109 (2009).

[38] D. Debels and M. Vanhoucke, Decomposition-based genetic algorithm for the resource-constrained project scheduling problem, Oper. Res. 55, 457–469 (2007).

[39] G. Koulinas, L. Kotsikas, and K. Anagnostopoulos, A particle swarm optimization based hyper-heuristic algorithm for the classic resource constrained project scheduling problem, Inf. Sci. 277, 680–693 (2014).

[40] V. Valls, F. Ballestin, and S. Quintanilla, A hybrid genetic algorithm for the resource-constrained project scheduling problem, Eur. J. Oper. Res. 185 (2), 495–508 (2008).

[41] J. Carlier, A. Moukrim, and H. Xu, A memetic algorithm for the resource constrained project scheduling problem, in Proc. 2009 Int. Conf. Ind. Eng. Syst. Manage., Montreal, Canada, May 13–15, 2009 (IEEE, Piscataway, 2009).

[42] D. Debels, B. R. De Reyck Leus, and M. Vanhoucke, A hybrid scatter search electromagnetism meta-heuristic for project scheduling, Eur. J. Oper. Res. 169 (2), 638–653 (2006).

[43] M. Ranjbar and F. Kianfar, A hybrid scatter search for the RCPSP, Sci. Iran. 16 (1), 11–18 (2009).

[44] P. Jedrzejowicz and E. Ratajczak, Population learning algorithm for the resource-constrained project scheduling, in Perspectives in Modern Project Scheduling (Springer, New York, 2006), pp. 275–296.

[45] K. C. Ying, S. W. Lin, and Z. J. Lee, Hybrid-directional planning: Improving improvement heuristics for scheduling resource-constrained projects, Int. J. Adv. Manuf. Technol. 41 (3–4), 358–366 (2009).

[46] J. Alcaraz and C. Maroto, A hybrid genetic algorithm based on intelligent encoding for project scheduling, in Perspectives in Modern Project Scheduling (Springer, New York, 2006), pp. 249–274.

[47] V. Valls, F. Ballestin, and M. S. Quintanilla, Justification and RCPSP: A technique that pays, Eur. J. Oper. Res. 165 (2), 375–386 (2005).

 © Sobolev Institute of Mathematics, 2015