EN|RU

Volume 29, No 4, 2022, P. 104-123

UDC 519.115.5
Yu. V. Tarannikov
On the existence of Agievich-primitive partitions

Abstract:
We prove that for any positive integer $m$ there exists the smallest positive integer $N = N_{q}(m)$ such that for $n > N$ there are no Agievich-primitive partitions of the space $F_q^n$ into $q^m$ affine subspaces of dimension $n - m$. We give lower and upper bounds on the value $N_{q}(m)$ and prove that $N_{q}(2) = q + 1$. Results of the same type for partitions into coordinate subspaces are established.
Bibliogr. 16.

Keywords: affine subspace, partition of a space, bound, bent function, coordinate subspace, face, associative block design.

DOI: 10.33048/daio.2022.29.747

Yuriy V. Tarannikov 1,2
1. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics,
1 Leninskie Gory, 119991 Moscow, Russia
2. Moscow Center for Fundamental and Applied Mathematics,
1 Leninskie Gory, 119991 Moscow, Russia
e-mail: yutarann@gmail.com

Received July 11, 2022
Revised July 28, 2022
Accepted July 28, 2022

References

[1] O. Heden, A survey of the different types of vector space partitions, Discrete Math. Algorithms Appl. 4 (1), 1–14 (2012).

[2] F. Akman and P. A. Sissokho, Reconfiguration of subspace partitions, J. Comb. Des. 30 (1), 5–18 (2022).

[3] S. V. Avgustinovich, F. I. Solov’eva, and O. Heden, Partitions of an $n$-cube into nonequivalent perfect codes, Probl. Peredachi Inf. 43 (4), 45–50 (2007) [Russian] [Probl. Inf. Transm. 43 (4), 310–315 (2007)].

[4] S. V. Agievich, Bent rectangles, in Boolean Functions in Cryptology and Information Security (IOS Press, Amsterdam, 2008), pp. 3–22 (NATO Sci. Peace Secur. Ser. D: Inf. Commun. Secur., Vol. 18).

[5] I. P. Baksova and Yu. V. Tarannikov, On a construction of bent functions, Obozr. Prikl. Prom. Mat. 27 (1), 64–66 (2020) [Russian].

[6] I. P. Baksova and Yu. V. Tarannikov, The bounds on the number of partitions of the space $F_2^m$ into $k$-dimensional affine subspaces, Vestn. Mosk. Univ., Ser. 1. Mat. Mekh., No. 3, 21–25 (2022) [Russian] [Mosc. Univ. Math. Bull. 77 (3), 131–135 (2022)].

[7] V. N. Potapov, A. A. Taranenko, and Yu. V. Tarannikov, Asymptotic bounds on numbers of bent functions and partitions of the Boolean hypercube into linear and affine subspaces (Cornell Univ., Ithaca, NY, 2021) (Cornell Univ. Libr. e-Print Archive, arXiv:2108.00232).

[8] O. A. Logachev, A. A. Salnikov, S. V. Smyshlyaev, and V. V. Yashchenko, Boolean Functions in Coding Theory and Cryptography (Lenard, Moscow, 2021) [Russian].

[9] O. Heden and F. I. Solov’eva, Partitions of $F^n$ into non-parallel Hamming codes, Adv. Math. Commun. 3 (4), 385–397 (2009).

[10] D. S. Krotov, A partition of the hypercube into maximally nonparallel Hamming codes, J. Comb. Des. 22 (4), 179–187 (2014).

[11] R. L. Rivest, On hash-coding algorithms for partial match retrieval, in Proc. 15th Annu. Symp. Switching Automata Theory, New Orleans, USA, Oct. 14–16, 1974 (IEEE, Piscataway, 1974), pp. 95–103.

[12] A. E. Brouwer, On associative block designs, in Combinatorics (North-Holland, Amsterdam, 1978), pp. 173–184 (Colloq. Math. Soc. J. Bolyai, Vol. 18).

[13] J. H. van Lint, {$0, 1, \ast$}-distance problems in combinatorics, in Surveys in Combinatorics (Inv. Pap. 10th British Comb. Conf., Glasgow, UK, July 22–26, 1985) (Camb. Univ. Press, Cambridge, 1985), pp. 113–135 (Lond. Math. Soc. Lect. Notes Ser., Vol. 103).

[14] V. N. Potapov, DP-colorings of uniform hypergraphs and splittings of Boolean hypercube into faces, Electron. J. Comb. 29 (3), ID P3.37, 7 p. (2022).

[15] J. H. van Lint and R. M. Wilson, A Course in Combinatorics (Camb. Univ. Press, Cambridge, 2001), 620 p.

[16] J. A. La Poutré, A theorem on associative block designs, Discrete Math. 58 (2), 205–208 (1986).
 © Sobolev Institute of Mathematics, 2015