Sobolev Institute of Mathematics Laboratory "Mathematical Models of Decision Making"
Prof. Vladimir Beresnev Professor,
|
|
Personal data:
Name: Vladimir Beresnev
|
Address:
Akademik Koptyug pr. 4,
Sobolev Institute of Mathematics,
630090 Novosibirsk, Russia |
Education:
Positions: Sobolev Institute of Mathematics:
Teaching:
Teaching books:
|
Research interests:
Other activities:
|
Selected publications:
V. Beresnev, A. Melnikov. ε -Constraint method for bi-objective competitive facility location problem with uncertain demand scenario // EURO Journal on Computational Optimization. 2019 DOI: 10.1007/s13675-019-00117-5 (in press)
Beresnev, V.L., Melnikov, A.A. Approximation of the competitive facility location problem with MIPs// Computers and Operations Research 2019 Vol. 104, P. 139-148 DOI: 10.1016/j.cor.2018.12.010
Beresnev, V.L., Melnikov, A.A. A Cut Generation Algorithm of Finding an Optimal Solution in a Market Competition//Journal of Applied and Industrial Mathematics 2019. Vol.13(4), P. 612-622 DOI: 10.1134/S1990478919040045
Beresnev, V.L., Melnikov, A.A. A Cut Generation Algorithm of Finding an Optimal Solution in a Market Competition//Journal of Applied and Industrial Mathematics 2019Vol.13(2), P. 194-207 DOI: 10.1134/S1990478919020029
Beresnev V., Melnikov A. Exact method for the capacitated competitive facility location problem // Computers and Operations Research. 2018. Vol. 95, P.73-82.
Beresnev, V.L., Davydov, I.A., Kononova, P.A., Melnikov, A.A. Bilevel “Defender–Attacker” Model with Multiple Attack Scenarios // Journal of Applied and Industrial Mathematicsþ 2018 Vol. 12, Issue 3, P. 417-425.DOI: 10.1134/S1990478918030031
Beresnev V., Melnikov A. Cut Generation Algorithm for the Discrete Competitive Facility Location Problem // Doklady Mathematics 2018. Vol. 97, Issue 3, P. 254-257 DOI: 10.1134/S1064562418030183
An upper bound for the competitive location and capacity choice problem with multiple demand scenarios //Journal of Applied and Industrial Mathematics. 2017, Vol.11(4) P. 472–480 (Beres_Meknikov_JAIM_2017.pdf)
Upper Bound for the Competitive Facility Location Problem with Quantile Criterion // Proceedings of the International conference on Discrete Optimization and Operations Research DOOR 2016. LNCS. 2016. Vol. 9869. P.355-367 DOI: 10.1007/978-3-319-44914-2_30 (Mel_Ber_LNCS_9869(2).pdf)
Facility Location in Unfair Competition // Proceedings of the International conference on Discrete Optimization and Operations Research DOOR 2016. LNCS. 2016. Vol. 9869. P. 306-3016
(Ber_Mel_LNCS_9869(1).pdf)V. L. Beresnev and A. A. Melnikov A capacitated competitive facility location problem // Journal of Applied and Industrial Mathematics. 2016 Vol.10, N 1. P. 61-68. DOI: 10.1134/S1990478916010075 (Beres_Meknikov_JAIM_2016.pdf)
The branch-and-bound algorithm for a competitive facility location problem with the prescribed choice of suppliers // Journal of Applied and Industrial Mathematics.
2014. Vol. 8, Issue 2, P. 177-189. DOI: 10.1134/S1990478914020045. (Beresnev-Melnikov-JAIM-2014.pdf)V. L. Beresnev.
On the Competitive Facility Location Problem with a Free Choice of Suppliers // Automation and Remote Control, 2014, Vol. 75, No. 4, pp. 668–676. (Beresnev_Aut-and-Remote-Contr-2014.pdf)V. Beresnev. Branch-and-Bound Algorithm for Competitive Facility Location Problem // Computers and Operations Research 40 (2013), pp. 2062-2070. DOI: 10.1016/j.cor.2013.02.023 (Beresnev_COR_2013.pdf 290Kb)
V. L. Beresnev Local search algorithms for the problem of competitive location of enterprises // Automation and Remote Control. 2012. Vol. 73, N 3. P 425–439
V.L. Beresnev, E.N. Goncharov, A.A. Melnikov. Local search over generalized neighborhood for an optimization problem of pseudo-boolean functions //Journal of Applied and Industrial Mathematics. 2012. Vol. 6, Issue 1. P. 22–30.
V. L. Beresnev. Local search algorithm for the competitive facility location problem // Proceedings of «Intellectualization of information processing» conference. October 17-23, 2010. Cyprus, 2010 P. 236-239.
V.L. Beresnev, A.A. Melnikov. Approximate Algorithms for the Competitive Facility Location Problem // Journal of Applied and Industrial Mathematics. 2011. Vol. 5, Issue 2. P. 180–190. (Beresnev-Melnikov-JAIM-2010.pdf)
V. L. Beresnev and V. I. Suslov. A Mathematical Model of Market Competition // Journal of Applied and Industrial Mathematics. 2010. Vol. 4, No. 2, 2010 P.147-157 (Beresnev-Suslov-JAIM-2010.pdf)
V.L. Beresnev. Upper bounds for objective functions of discrete competitive facility location problems // Journal of Applied and Industrial Mathematics. 2009. V. 3, N 4. P. 419-432 (Beresnev-SIBJIM-2009(eng).pdf)
V.L. Beresnev. Discrete location problem and polynomial of Boolean variables. Novosibirsk. Sobolev Institute Press. 2005. 408 pp.
V.L. Beresnev An efficient algorithm for the uncapacitated facility location problem with totally balanced matrix // Discrete Applied Mathematics, 2001. V.114, N 1-3, (30) P. 13–22.
V. Beresnev, E. Goncharov. Heuristic Algorithm for Minimization Problem for Polynomials in Boolean variables // Discrete Analysis and Operations Research. Ser. 2. 1998. V. 5. N2. P. 3-19.
V.Beresnev. An Effective Algorithm for the Uncapacitated Facility Location Problem with Totally Balanced Matrix // Discrete Analysis and Operations Research. Ser. 1. 1998. V. 5. N1. P. 20-31.
V.Beresnev. Mathemarical Models of planning tecnical tools systems // Discrete Analysis and Operations Research. Ser. 2. 1997. V. 4. N1. P. 4-29.
V.Beresnev, A.Ageev. Minimization Algorithm for some cases of the Polynomial in (0,1)-variables // Optimizational Models and Methods. Novosibirsk: Nauka, 1988. V. 10. P. 5-17
V.L. Beresnev. Minimization Algorithms for polynomials in Boolean variables // Problems of Cybernetic. 1979. V.36. P. 225-246.
V.L. Beresnev, E.Kh. Gimadi, and V.T. Dement'ev Extremal Standardization Problems. Novosibirsk: Nauka, 1978