RU
🏠

Gutman A.E.
Order analysis
20 publications, 1988–2004

Development of the theory of lattice-normed spaces and dominated operators

1.
Gutman A.E.
Multiplicative representation of disjointness preserving operators [in Russian].
Diploma thesis. Dept. of Math. Anal., Faculty of Mech. and Math., Novosib. State Univ., Novosibirsk, 1988. 94 p.
2.
Gutman A.E.
On disjointness preserving operators in Banach–Kantorovich spaces [in Russian] //
Report abstract. XIV School on the theory of operators in function spaces (Novgorod, September 6–14, 1989): Proceedings. Novgorod, 1989. Part 1. P. 75.
3.
Gutman A.E.
An example of a sequentially o-continuous but not dominated disjointness preserving operator [in Russian] //
Optimization. 1990. Issue 47(64). P. 116–121.
4.
Gutman A.E.
On disjointness preserving operators in spaces of continuous functions [in Russian] //
Report abstract. XV All-USSR School on the theory of operators in function spaces (Ulyanovsk, September 5–12, 1990): Proceedings. Ulyanovsk, 1990. Part 1. P. 76.
5.
Gutman A.E.
Measurable Banach bundles and weight operators [in Russian] //
Report abstract. The Fifth School of Siberian and Far-Eastern young mathematicians (Novosibirsk, December 10–16, 1990): Proceedings. Novosibirsk, 1990. P. 30–32.
6.
Gutman A.E.
On the representation of lattice-normed spaces [in Russian] //
Sib. Matem. Zh. 1991. V. 32, N 2. P. 41–54.
Gutman A.E.
On the realization of lattice-normed spaces //
Sib. Math. J. 1991. V. 32, N 2. P. 210–221.
7.
Gutman A.E.
Representation of lattice-normed spaces and its applications [in Russian].
Diss. abstract ... Ph.D. in mathematics: 01.01.01. Sobolev Inst. Math., Novosibirsk, 1991. 14 p.
8.
Gutman A.E.
Representation of lattice-normed spaces and its applications [in Russian].
Diss. ... Ph.D. in mathematics: 01.01.01. Sobolev Inst. Math., Novosibirsk, 1991. 110 p.
9.
Gutman A.E.
Lifting in the space of measurable sections [in Russian] //
Report abstract. XV All-USSR School on the theory of operators in function spaces (Nizhny Novgorod, September 13–20, 1991): Proceedings. Nizhny Novgorod, 1991. P. 63.
10.
Gutman A.E.
Banach bundles in the theory of lattice-normed spaces. I. Continuous Banach bundles //
Siberian Adv. Math. 1993. V. 3, N 3. P. 1–55.
11.
Gutman A.E.
Banach bundles in the theory of lattice-normed spaces. II. Measurable Banach bundles //
Siberian Adv. Math. 1993. V. 3, N 4. P. 8–40.
12.
Gutman A.E.
Banach bundles in the theory of lattice-normed spaces. III. Approximating sets and bounded operators //
Siberian Adv. Math. 1994. V. 4, N 2. P. 54–75.
13.
Gutman A.E.
Banach bundles in the theory of lattice-normed spaces [in Russian] //
Linear operators coordinated with order. Novosibirsk: IM SB RAS, 1995. / Proc. Inst. Math. SB RAS. V. 29. P. 63–211.
14.
Gutman A.E.
Banach bundles in the theory of lattice-normed spaces [in Russian].
Diss. abstract ... D.Sc. in mathematics: 01.01.01. Sobolev Inst. Math., Novosibirsk, 1995. 16 p.
15.
Gutman A.E.
Banach bundles in the theory of lattice-normed spaces [in Russian].
Diss. ... D.Sc. in mathematics: 01.01.01. Sobolev Inst. Math., Novosibirsk, 1995. 312 p.
16.
Gutman A.E.
Banach bundles in the theory of lattice-normed spaces. IV. Disjointness preserving operators //
Siberian Adv. Math. 1996. V. 6, N 2. P. 35–102.
17.
Bukhvalov A.V., Gutman A.E., Korotkov V.B., Kusraev A.G., Kutateladze S.S., Makarov B.M.
Vector lattices and integral operators.
Dordrecht: Kluwer, 1996. ix+462 p.
18.
Gutman A.E.
Disjointness preserving operators //
Chapter 5 in: Vector lattices and integral operators. Dordrecht: Kluwer, 1996. P. 360–454.
19.
Gutman A.E., Feofanov D.S.
Analytic description of principal operator bands [in Russian].
Textbook. Novosibirsk: Novosib. State Univ., 2000. 31 p.
20.
Gutman A.E., Feofanov D.S.
Description of principal bands generated by disjointness preserving operators [in Russian] //
Vladikavk. Math. J. 2004. V. 6, issue 3. P. 26–35.
 List in BibTeX format
The papers are presented here for academic purposes and are not intended for mass dissemination or copying. Last updated
June 10, 2020