RU
🏠

Gutman A.E.
Order analysis
20 publications, 1988–2004

Development of the theory of lattice-normed spaces and dominated operators

20.
Gutman A.E., Feofanov D.S.
Description of principal bands generated by disjointness preserving operators [in Russian] //
Vladikavk. Math. J. 2004. V. 6, issue 3. P. 26–35.
19.
Gutman A.E., Feofanov D.S.
Analytic description of principal operator bands [in Russian].
Textbook. Novosibirsk: Novosib. State Univ., 2000. 31 p.
18.
Gutman A.E.
Disjointness preserving operators //
Chapter 5 in: Vector lattices and integral operators. Dordrecht: Kluwer, 1996. P. 360–454.
17.
Bukhvalov A.V., Gutman A.E., Korotkov V.B., Kusraev A.G., Kutateladze S.S., Makarov B.M.
Vector lattices and integral operators.
Dordrecht: Kluwer, 1996. ix+462 p.
16.
Gutman A.E.
Banach bundles in the theory of lattice-normed spaces. IV. Disjointness preserving operators //
Siberian Adv. Math. 1996. V. 6, N 2. P. 35–102.
15.
Gutman A.E.
Banach bundles in the theory of lattice-normed spaces [in Russian].
Diss. ... D.Sc. in mathematics: 01.01.01. Sobolev Inst. Math., Novosibirsk, 1995. 312 p.
14.
Gutman A.E.
Banach bundles in the theory of lattice-normed spaces [in Russian].
Diss. abstract ... D.Sc. in mathematics: 01.01.01. Sobolev Inst. Math., Novosibirsk, 1995. 16 p.
13.
Gutman A.E.
Banach bundles in the theory of lattice-normed spaces [in Russian] //
Linear operators coordinated with order. Novosibirsk: IM SB RAS, 1995. / Proc. Inst. Math. SB RAS. V. 29. P. 63–211.
12.
Gutman A.E.
Banach bundles in the theory of lattice-normed spaces. III. Approximating sets and bounded operators //
Siberian Adv. Math. 1994. V. 4, N 2. P. 54–75.
11.
Gutman A.E.
Banach bundles in the theory of lattice-normed spaces. II. Measurable Banach bundles //
Siberian Adv. Math. 1993. V. 3, N 4. P. 8–40.
10.
Gutman A.E.
Banach bundles in the theory of lattice-normed spaces. I. Continuous Banach bundles //
Siberian Adv. Math. 1993. V. 3, N 3. P. 1–55.
9.
Gutman A.E.
Lifting in the space of measurable sections [in Russian] //
Report abstract. XV All-USSR School on the theory of operators in function spaces (Nizhny Novgorod, September 13–20, 1991): Proceedings. Nizhny Novgorod, 1991. P. 63.
8.
Gutman A.E.
Representation of lattice-normed spaces and its applications [in Russian].
Diss. ... Ph.D. in mathematics: 01.01.01. Sobolev Inst. Math., Novosibirsk, 1991. 110 p.
7.
Gutman A.E.
Representation of lattice-normed spaces and its applications [in Russian].
Diss. abstract ... Ph.D. in mathematics: 01.01.01. Sobolev Inst. Math., Novosibirsk, 1991. 14 p.
6.
Gutman A.E.
On the representation of lattice-normed spaces [in Russian] //
Sib. Matem. Zh. 1991. V. 32, N 2. P. 41–54.
Gutman A.E.
On the realization of lattice-normed spaces //
Sib. Math. J. 1991. V. 32, N 2. P. 210–221.
5.
Gutman A.E.
Measurable Banach bundles and weight operators [in Russian] //
Report abstract. The Fifth School of Siberian and Far-Eastern young mathematicians (Novosibirsk, December 10–16, 1990): Proceedings. Novosibirsk, 1990. P. 30–32.
4.
Gutman A.E.
On disjointness preserving operators in spaces of continuous functions [in Russian] //
Report abstract. XV All-USSR School on the theory of operators in function spaces (Ulyanovsk, September 5–12, 1990): Proceedings. Ulyanovsk, 1990. Part 1. P. 76.
3.
Gutman A.E.
An example of a sequentially o-continuous but not dominated disjointness preserving operator [in Russian] //
Optimization. 1990. Issue 47(64). P. 116–121.
2.
Gutman A.E.
On disjointness preserving operators in Banach–Kantorovich spaces [in Russian] //
Report abstract. XIV School on the theory of operators in function spaces (Novgorod, September 6–14, 1989): Proceedings. Novgorod, 1989. Part 1. P. 75.
1.
Gutman A.E.
Multiplicative representation of disjointness preserving operators [in Russian].
Diploma thesis. Dept. of Math. Anal., Faculty of Mech. and Math., Novosib. State Univ., Novosibirsk, 1988. 94 p.
 List in BibTeX format
The papers are presented here for academic purposes and are not intended for mass dissemination or copying. Last updated
June 10, 2020