20. | Gutman A.E., Feofanov D.S. Description of principal bands generated by disjointness preserving operators [in Russian] // Vladikavk. Math. J. 2004. V. 6, issue 3. P. 26–35. |
19. | Gutman A.E., Feofanov D.S. Analytic description of principal operator bands [in Russian]. Textbook. Novosibirsk: Novosib. State Univ., 2000. 31 p. |
18. | Gutman A.E. Disjointness preserving operators // Chapter 5 in: Vector lattices and integral operators. Dordrecht: Kluwer, 1996. P. 360–454. |
17. | Bukhvalov A.V., Gutman A.E., Korotkov V.B., Kusraev A.G., Kutateladze S.S., Makarov B.M. Vector lattices and integral operators. Dordrecht: Kluwer, 1996. ix+462 p. |
16. | Gutman A.E. Banach bundles in the theory of lattice-normed spaces. IV. Disjointness preserving operators // Siberian Adv. Math. 1996. V. 6, N 2. P. 35–102. |
15. | Gutman A.E. Banach bundles in the theory of lattice-normed spaces [in Russian]. Diss. ... D.Sc. in mathematics: 01.01.01. Sobolev Inst. Math., Novosibirsk, 1995. 312 p. |
14. | Gutman A.E. Banach bundles in the theory of lattice-normed spaces [in Russian]. Diss. abstract ... D.Sc. in mathematics: 01.01.01. Sobolev Inst. Math., Novosibirsk, 1995. 16 p. |
13. | Gutman A.E. Banach bundles in the theory of lattice-normed spaces [in Russian] // Linear operators coordinated with order. Novosibirsk: IM SB RAS, 1995. / Proc. Inst. Math. SB RAS. V. 29. P. 63–211. |
12. | Gutman A.E. Banach bundles in the theory of lattice-normed spaces. III. Approximating sets and bounded operators // Siberian Adv. Math. 1994. V. 4, N 2. P. 54–75. |
11. | Gutman A.E. Banach bundles in the theory of lattice-normed spaces. II. Measurable Banach bundles // Siberian Adv. Math. 1993. V. 3, N 4. P. 8–40. |
10. | Gutman A.E. Banach bundles in the theory of lattice-normed spaces. I. Continuous Banach bundles // Siberian Adv. Math. 1993. V. 3, N 3. P. 1–55. |
9. | Gutman A.E. Lifting in the space of measurable sections [in Russian] // Report abstract. XV All-USSR School on the theory of operators in function spaces (Nizhny Novgorod, September 13–20, 1991): Proceedings. Nizhny Novgorod, 1991. P. 63. |
8. | Gutman A.E. Representation of lattice-normed spaces and its applications [in Russian]. Diss. ... Ph.D. in mathematics: 01.01.01. Sobolev Inst. Math., Novosibirsk, 1991. 110 p. |
7. | Gutman A.E. Representation of lattice-normed spaces and its applications [in Russian]. Diss. abstract ... Ph.D. in mathematics: 01.01.01. Sobolev Inst. Math., Novosibirsk, 1991. 14 p. |
6. | Gutman A.E. On the representation of lattice-normed spaces [in Russian] // Sib. Matem. Zh. 1991. V. 32, N 2. P. 41–54. |
Gutman A.E. On the realization of lattice-normed spaces // Sib. Math. J. 1991. V. 32, N 2. P. 210–221. | |
5. | Gutman A.E. Measurable Banach bundles and weight operators [in Russian] // Report abstract. The Fifth School of Siberian and Far-Eastern young mathematicians (Novosibirsk, December 10–16, 1990): Proceedings. Novosibirsk, 1990. P. 30–32. |
4. | Gutman A.E. On disjointness preserving operators in spaces of continuous functions [in Russian] // Report abstract. XV All-USSR School on the theory of operators in function spaces (Ulyanovsk, September 5–12, 1990): Proceedings. Ulyanovsk, 1990. Part 1. P. 76. |
3. | Gutman A.E. An example of a sequentially o-continuous but not dominated disjointness preserving operator [in Russian] // Optimization. 1990. Issue 47(64). P. 116–121. |
2. | Gutman A.E. On disjointness preserving operators in Banach–Kantorovich spaces [in Russian] // Report abstract. XIV School on the theory of operators in function spaces (Novgorod, September 6–14, 1989): Proceedings. Novgorod, 1989. Part 1. P. 75. |
1. | Gutman A.E. Multiplicative representation of disjointness preserving operators [in Russian]. Diploma thesis. Dept. of Math. Anal., Faculty of Mech. and Math., Novosib. State Univ., Novosibirsk, 1988. 94 p. |
The papers are presented here for academic purposes and are not intended for mass dissemination or copying. | Last updated June 10, 2020 |